The research objective herein is to understand the relationships between the interatomic potential parameters and properties used in the training and validation of potentials, specifically using a recently developed modified embedded-atom method (MEAM) potential for saturated hydrocarbons (C–H system). This potential was parameterized to a training set that included bond distances, bond angles, and atomization energies at 0 K of a series of alkane structures from methane to n-octane. In this work, the parameters of the MEAM potential were explored through a fractional factorial design and a Latin hypercube design to better understand how individual MEAM parameters affected several properties of molecules (energy, bond distances, bond angles, and dihedral angles) and also to quantify the relationship/correlation between various molecules in terms of these properties. The generalized methodology presented shows quantitative approaches that can be used in selecting the appropriate parameters for the interatomic potential, selecting the bounds for these parameters (for constrained optimization), selecting the responses for the training set, selecting the weights for various responses in the objective function, and setting up the single/multi-objective optimization process itself. The significance of the approach applied in this study is not only the application to the C–H system but that the broader framework can also be easily applied to any number of systems to understand the significance of parameters, their relationships to properties, and the subsequent steps for designing interatomic potentials under uncertainty.

References

References
1.
Becker
,
C. A.
,
2017
, “
Interatomic Potentials Repository Project
,” National Institute of Standards and Technology, Gaithersburg, MD, accessed Aug. 1, 2017, www.ctcms.nist.gov/potentials/
2.
Tadmor
,
E. B.
,
Elliott
,
R. S.
,
Sethna
,
J. P.
,
Miller
,
R. E.
, and
Becker
,
C. A.
, 2017, “
Knowledgebase of Interatomic Models
,” National Institute of Standards and Technology, Gaithersburg, MD, accessed Aug. 1, 2017, https://openkim.org/
3.
Tadmor
,
E. B.
,
Elliott
,
R. S.
,
Sethna
,
J. P.
,
Miller
,
R. E.
, and
Becker
,
C. A.
,
2011
, “
The Potential of Atomistic Simulations and the Knowledgebase of Interatomic Models
,”
JOM
,
63
(
7
), p.
17
.
4.
Tadmor
,
E. B.
,
Elliott
,
R. S.
,
Phillpot
,
S. R.
, and
Sinnott
,
S. B.
,
2013
, “
NSF Cyberinfrastructures: A New Paradigm for Advancing Materials Simulation
,”
Curr. Opin. Solid State Mater. Sci.
,
17
(
6
), pp.
298
304
.
5.
Kim
,
S. G.
,
Horstemeyer
,
M. F.
,
Baskes
,
M. I.
,
Rais-Rohani
,
M.
,
Kim
,
S.
,
Jelinek
,
B.
,
Houze
,
J.
,
Moitra
,
A.
, and
Liyanage
,
L.
,
2009
, “
Semi-Empirical Potential Methods for Atomistic Simulations of Metals and Their Construction Procedures
,”
ASME J. Eng. Mater. Technol.
,
131
(
4
), p.
041210
.
6.
Martinez
,
J. A.
,
Yilmaz
,
D. E.
,
Liang
,
T.
,
Sinnott
,
S. B.
, and
Phillpot
,
S. R.
,
2013
, “
Fitting Empirical Potentials: Challenges and Methodologies
,”
Curr. Opin. Solid State Mater. Sci.
,
17
(
6
), pp.
263
270
.
7.
Martinez
,
J. A.
,
Chernatynskiy
,
A.
,
Yilmaz
,
D. E.
,
Liang
,
T.
,
Sinnott
,
S. B.
, and
Phillpot
,
S. R.
,
2016
, “
Potential Optimization Software for Materials (POSMat)
,”
Comput. Phys. Commun.
,
203
, pp.
201
211
.
8.
Becker
,
C. A.
,
Tavazza
,
F.
, and
Levine
,
L. E.
,
2011
, “
Implications of the Choice of Interatomic Potential on Calculated Planar Faults and Surface Properties in Nickel
,”
Philos. Mag.
,
91
(
27
), pp.
3578
3597
.
9.
Becker
,
C. A.
,
Tavazza
,
F.
,
Trautt
,
Z. T.
, and
de Macedo
,
R. A. B.
,
2013
, “
Considerations for Choosing and Using Force Fields and Interatomic Potentials in Materials Science and Engineering
,”
Curr. Opin. Solid State Mater. Sci.
,
17
(
6
), pp.
277
283
.
10.
Trautt
,
Z. T.
,
Tavazza
,
F.
, and
Becker
,
C. A.
,
2015
, “
Facilitating the Selection and Creation of Accurate Interatomic Potentials With Robust Tools and Characterization
,”
Modell. Simul. Mater. Sci. Eng.
,
23
(
7
), p.
074009
.
11.
Daw
,
M. S.
, and
Baskes
,
M. I.
,
1983
, “
Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals
,”
Phys. Rev. Lett.
,
50
(
17
), pp.
1285
1288
.
12.
Daw
,
M. S.
, and
Baskes
,
M. I.
,
1984
, “
Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals
,”
Phys. Rev. B
,
29
(
12
), p.
6443
.
13.
Daw
,
M. S.
,
Foiles
,
S. M.
, and
Baskes
,
M. I.
,
1993
, “
The Embedded-Atom Method: A Review of Theory and Applications
,”
Mater. Sci. Rep.
,
9
(
7–8
), pp.
251
310
.
14.
Baskes
,
M. I.
,
1987
, “
Application of the Embedded-Atom Method to Covalent Materials: A Semiempirical Potential for Silicon
,”
Phys. Rev. Lett.
,
59
(
23
), pp.
2666
2669
.
15.
Baskes
,
M. I.
,
Nelson
,
J. S.
, and
Wright
,
A. F.
,
1989
, “
Semiempirical Modified Embedded-Atom Potentials for Silicon and Germanium
,”
Phys. Rev. B
,
40
(
9
), pp.
6085
6100
.
16.
Baskes
,
M. I.
,
1992
, “
Modified Embedded-Atom Potentials for Cubic Materials and Impurities
,”
Phys. Rev. B
,
46
(
5
), pp.
2727
2742
.
17.
Lee
,
B. J.
, and
Baskes
,
M. I.
,
2000
, “
Second Nearest-Neighbor Modified Embedded-Atom-Method Potential
,”
Phys. Rev. B
,
62
(
13
), p.
8564
.
18.
Lee
,
B. J.
,
Baskes
,
M. I.
,
Kim
,
H.
, and
Cho
,
Y. K.
,
2001
, “
Second Nearest-Neighbor Modified Embedded Atom Method Potentials for BCC Transition Metals
,”
Phys. Rev. B
,
64
(
18
), p.
184102
.
19.
Lee
,
B. J.
,
Shim
,
J. H.
, and
Baskes
,
M. I.
,
2003
, “
Semiempirical Atomic Potentials for the fcc Metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb Based on First and Second Nearest-Neighbor Modified Embedded Atom Method
,”
Phys. Rev. B
,
68
(
14
), p.
144112
.
20.
Baskes
,
M. I.
,
Srinivasan
,
S. G.
,
Valone
,
S. M.
, and
Hoagland
,
R. G.
,
2007
, “
Multistate Modified Embedded Atom Method
,”
Phys. Rev. B
,
75
(
9
), p.
094113
.
21.
Zhang
,
J. M.
,
Ma
,
F.
, and
Xu
,
K. W.
,
2004
, “
Calculation of the Surface Energy of FCC Metals With Modified Embedded-Atom Method
,”
Appl. Surf. Sci.
,
229
(
1
), pp.
34
42
.
22.
Zhang
,
J. M.
,
Ma
,
F.
,
Xu
,
K. W.
, and
Xin
,
X. T.
,
2003
, “
Anisotropy Analysis of the Surface Energy of Diamond Cubic Crystals
,”
Surf. Interface Anal.
,
35
(
10
), pp.
805
809
.
23.
Baskes
,
M. I.
, and
Johnson
,
R. A.
,
1994
, “
Modified Embedded Atom Potentials for hcp Metals
,”
Modell. Simul. Mater. Sci. Eng.
,
2
(
1
), p.
147
.
24.
Hu
,
W.
,
Zhang
,
B.
,
Huang
,
B.
,
Gao
,
F.
, and
Bacon
,
D. J.
,
2001
, “
Analytic Modified Embedded Atom Potentials for hcp Metals
,”
J. Phys. Condens. Matter
,
13
(
6
), p.
1193
.
25.
Zhang
,
J. M.
,
Ma
,
F.
, and
Xu
,
K. W.
,
2003
, “
Calculation of the Surface Energy of BCC Metals by Using the Modified Embedded-Atom Method
,”
Surf. Interface Anal.
,
35
(
8
), pp.
662
666
.
26.
Jelinek
,
B.
,
Groh
,
S.
,
Horstemeyer
,
M. F.
,
Houze
,
J.
,
Kim
,
S. G.
,
Wagner
,
G. J.
,
Moitra
,
A.
, and
Baskes
,
M. I.
,
2012
, “
Modified Embedded Atom Method Potential for Al, Si, Mg, Cu, and Fe Alloys
,”
Phys. Rev. B
,
85
(
24
), p.
245102
.
27.
Lee
,
B. J.
,
Ko
,
W. S.
,
Kim
,
H. K.
, and
Kim
,
E. H.
,
2010
, “
The Modified Embedded-Atom Method Interatomic Potentials and Recent Progress in Atomistic Simulations
,”
Calphad
,
34
(
4
), pp.
510
522
.
28.
Horstemeyer
,
M. F.
,
2012
,
Integrated Computational Materials Engineering (ICME) for Metals: Using Multiscale Modeling to Invigorate Engineering Design With Science
,
Wiley
,
Hoboken, NJ
.
29.
Xiao
,
W.
,
Baskes
,
M. I.
, and
Cho
,
K.
,
2009
, “
MEAM Study of Carbon Atom Interaction With Ni Nano Particle
,”
Surf. Sci.
,
603
(
13
), pp.
1985
1998
.
30.
Uddin
,
J.
,
Baskes
,
M. I.
,
Srinivasan
,
S. G.
,
Cundari
,
T. R.
, and
Wilson
,
A. K.
,
2010
, “
Modified Embedded Atom Method Study of the Mechanical Properties of Carbon Nanotube Reinforced Nickel Composites
,”
Phys. Rev. B
,
81
(
10
), p.
104103
.
31.
Allinger
,
N. L.
,
Yuh
,
Y. H.
, and
Lii
,
J. H.
,
1989
, “
Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 1
,”
J. Am. Chem. Soc.
,
111
(
23
), pp.
8551
8566
.
32.
Lii
,
J. H.
, and
Allinger
,
N. L.
,
1989
, “
Molecular Mechanics. The MM3 Force Field for Hydrocarbons—2: Vibrational Frequencies and Thermodynamics
,”
J. Am. Chem. Soc.
,
111
(
23
), pp.
8566
8575
.
33.
Lii
,
J. H.
, and
Allinger
,
N. L.
,
1989
, “
Molecular Mechanics. The MM3 Force Field for Hydrocarbons—3: The van der Waals' Potentials and Crystal Data for Aliphatic and Aromatic Hydrocarbons
,”
J. Am. Chem. Soc.
,
111
(
23
), pp.
8576
8582
.
34.
Allinger
,
N. L.
,
Chen
,
K.
, and
Lii
,
J. H.
,
1996
, “
An Improved Force Field (MM4) for Saturated Hydrocarbons
,”
J. Comput. Chem.
,
17
(
5–6
), pp.
642
668
.
35.
Mayo
,
S. L.
,
Olafson
,
B. D.
, and
Goddard
,
W. A.
,
1990
, “
DREIDING: A Generic Force Field for Molecular Simulations
,”
J. Phys. Chem.
,
94
(
26
), pp.
8897
8909
.
36.
Brenner
,
D. W.
,
1990
, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
,
42
(
15
), p.
9458
.
37.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys. Condens. Matter
,
14
(
4
), p.
783
.
38.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.
39.
Van Duin
,
A. C. T.
,
Dasgupta
,
S.
,
Lorant
,
F.
, and
Goddard
,
W. A.
, III
,
2001
, “
ReaxFF: A Reactive Force Field for Hydrocarbons
,”
J. Phys. Chem. A
,
105
(
41
), pp.
9396
9409
.
40.
Yu
,
J.
,
Sinnott
,
S. B.
, and
Phillpot
,
S. R.
,
2007
, “
Charge Optimized Many-Body Potential for the Si/SiO2 System
,”
Phys. Rev. B
,
75
(
8
), p.
085311
.
41.
Shan
,
T.-R.
,
Devine
,
B. D.
,
Hawkins
,
J. M.
,
Asthagiri
,
A.
,
Phillpot
,
S. R.
, and
Sinnott
,
S. B.
,
2010
, “
Second-Generation Charge-Optimized Many-Body Potential for Si/SiO2 and Amorphous Silica
,”
Phys. Rev. B
,
82
(
23
), p.
235302
.
42.
Liang
,
T.
,
Devine
,
B.
,
Phillpot
,
S. R.
, and
Sinnott
,
S. B.
,
2012
, “
Variable Charge Reactive Potential for Hydrocarbons to Simulate Organic-Copper Interactions
,”
J. Phys. Chem. A
,
116
(
30
), pp.
7976
7991
.
43.
Brooks
,
B. R.
,
Bruccoleri
,
R. E.
,
Olafson
,
B. D.
,
States
,
D. J.
,
Swaminathan
,
S.
, and
Karplus
,
M.
,
1983
, “
CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations
,”
J. Comput. Chem.
,
4
(
2
), pp.
187
217
.
44.
Cornell
,
W. D.
,
Cieplak
,
P.
,
Bayly
,
C. I.
,
Gould
,
I. R.
,
Merz
,
K. M.
,
Ferguson
,
D. M.
,
Spellmeyer
,
D. C.
,
Fox
,
T.
,
Caldwell
,
J. W.
, and
Kollman
,
P. A.
,
1995
, “
A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules
,”
J. Am. Chem. Soc.
,
117
(
19
), pp.
5179
5197
.
45.
Sun
,
H.
,
1998
, “
COMPASS: An Ab Initio Force-Field Optimized for Condensed-Phase Applications Overview With Details on Alkane and Benzene Compounds
,”
J. Phys. Chem. B
,
102
(
38
), pp.
7338
7364
.
46.
Somers
,
W.
,
Bogaerts
,
A.
,
van Duin
,
A. C. T.
,
Huygh
,
S.
,
Bal
,
K. M.
, and
Neyts
,
E. C.
,
2013
, “
Temperature Influence on the Reactivity of Plasma Species on a Nickel Catalyst Surface: An Atomic Scale Study
,”
Catal. Today
,
211
, pp.
131
136
.
47.
Castro-Marcano
,
F.
, and
van Duin
,
A. C. T.
,
2013
, “
Comparison of Thermal and Catalytic Cracking of 1-Heptene From ReaxFF Reactive Molecular Dynamics Simulations
,”
Combust. Flame
,
160
(
4
), pp.
766
775
.
48.
Monti
,
S.
,
Li
,
C.
, and
Carravetta
,
V.
,
2013
, “
Dynamics Simulation of Monolayer and Multilayer Adsorption of Glycine on Cu(110)
,”
J. Phys. Chem. C
,
117
(
10
), pp.
5221
5228
.
49.
Kim
,
S.-Y.
,
van Duin
,
A. C. T.
, and
Kubicki
,
J. D.
,
2013
, “
Molecular Dynamics Simulations of the Interactions Between TiO2 Nanoparticles and Water With Na+ and Cl−, Methanol, and Formic Acid Using a Reactive Force Field
,”
J. Mater. Res.
,
28
(
3
), pp.
513
520
.
50.
Liang
,
T.
,
Shin
,
Y. K.
,
Cheng
,
Y.-T.
,
Yilmaz
,
D. E.
,
Vishnu
,
K. G.
,
Verners
,
O.
,
Zou
,
C.
,
Phillpot
,
S. R.
,
Sinnott
,
S. B.
, and
van Duin
,
A. C. T.
,
2013
, “
Reactive Potentials for Advanced Atomistic Simulations
,”
Annu. Rev. Mater. Res.
,
43
(
1
), pp.
109
129
.
51.
Nouranian
,
S.
,
Tschopp
,
M. A.
,
Gwaltney
,
S. R.
,
Baskes
,
M. I.
, and
Horstemeyer
,
M. F.
,
2014
, “
An Interatomic Potential for Saturated Hydrocarbons Based on the Modified Embedded-Atom Method
,”
Phys. Chem. Chem. Phys.
,
16
(
13
), pp.
6233
6249
.
52.
Nouranian
,
S.
,
Tschopp
,
M. A.
,
Gwaltney
,
S. R.
,
Baskes
,
M. I.
, and
Horstemeyer
,
M. F.
,
2015
, “
Simulations of Tensile Bond Rupture in Single Alkane Molecules Using Reactive Interatomic Potentials
,”
Chem. Phys. Lett.
,
635
, pp.
278
284
.
53.
Liyanage
,
L. S. I.
,
Kim
,
S. G.
,
Houze
,
J.
,
Kim
,
S.
,
Tschopp
,
M. A.
,
Baskes
,
M. I.
, and
Horstemeyer
,
M. F.
,
2014
, “
Structural, Elastic, and Thermal Properties of Cementite (Fe3C) Calculated Using a Modified Embedded Atom Method
,”
Phys. Rev. B
,
89
(
9
), p.
094102
.
54.
Tschopp
,
M. A.
,
Solanki
,
K. N.
,
Baskes
,
M. I.
,
Gao
,
F.
,
Sun
,
X.
, and
Horstemeyer
,
M. F.
,
2012
, “
Generalized Framework for Interatomic Potential Design: Application to Fe–He System
,”
J. Nucl. Mater.
,
425
(
1
), pp.
22
32
.
55.
Valone
,
S. M.
,
Baskes
,
M. I.
, and
Martin
,
R. L.
,
2006
, “
Atomistic Model of Helium Bubbles in Gallium-Stabilized Plutonium Alloys
,”
Phys. Rev. B
,
73
(
21
), p.
214209
.
56.
Baskes
,
M. I.
,
1999
, “
Atomistic Potentials for the Molybdenum-Silicon System
,”
Mater. Sci. Eng. A
,
261
(
1
), pp.
165
168
.
57.
Rose
,
J. H.
,
Smith
,
J. R.
,
Guinea
,
F.
, and
Ferrante
,
J.
,
1984
, “
Universal Features of the Equation of State of Metals
,”
Phys. Rev. B
,
29
(
6
), p.
2963
.
58.
Foiles
,
S. M.
, and
Daw
,
M. S.
,
1992
, “
DYNAMO. Molecular Dynamics and Energy Minimization Based on Embedded Atom Method
,” Sandia National Laboratory, Albuquerque, NM, Technical Report No.
ESTSC-000788MLTPL00
.https://www.osti.gov/scitech/biblio/1230281-molecular-dynamics-energy-minimization-based-embedded-atom-method
59.
Hernandez-Rivera
,
E.
,
Coleman
,
S. P.
, and
Tschopp
,
M. A.
,
2017
, “
Using Similarity Metrics to Quantify Differences in High-Throughput Data Sets: Application to X-ray Diffraction Patterns
,”
ACS Comb. Sci.
,
19
(
1
), pp.
25
36
.
You do not currently have access to this content.