Proper quantification and propagation of uncertainties in computational simulations are of critical importance. This issue is especially challenging for computational fluid dynamics (CFD) applications. A particular obstacle for uncertainty quantifications in CFD problems is the large model discrepancies associated with the CFD models used for uncertainty propagation. Neglecting or improperly representing the model discrepancies leads to inaccurate and distorted uncertainty distribution for the quantities of interest (QoI). High-fidelity models, being accurate yet expensive, can accommodate only a small ensemble of simulations and thus lead to large interpolation errors and/or sampling errors; low-fidelity models can propagate a large ensemble, but can introduce large modeling errors. In this work, we propose a multimodel strategy to account for the influences of model discrepancies in uncertainty propagation and to reduce their impact on the predictions. Specifically, we take advantage of CFD models of multiple fidelities to estimate the model discrepancies associated with the lower-fidelity model in the parameter space. A Gaussian process (GP) is adopted to construct the model discrepancy function, and a Bayesian approach is used to infer the discrepancies and corresponding uncertainties in the regions of the parameter space where the high-fidelity simulations are not performed. Several examples of relevance to CFD applications are performed to demonstrate the merits of the proposed strategy. Simulation results suggest that, by combining low- and high-fidelity models, the proposed approach produces better results than what either model can achieve individually.

References

References
1.
Le Maitre
,
O. P.
, and
Knio
,
O. M.
,
2010
,
Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics
,
Springer
,
New York
.
2.
Hoeting
,
J. A.
,
Madigan
,
D.
,
Raftery
,
A. E.
, and
Volinsky
,
C. T.
,
1999
, “
Bayesian Model Averaging: A Tutorial
,”
Stat. Sci.
,
14
(
4
), pp.
382
401
.http://www.jstor.org/stable/2676803?seq=1#page_scan_tab_contents
3.
Raftery
,
A. E.
,
Kárný
,
M.
, and
Ettler
,
P.
,
2010
, “
Online Prediction Under Model Uncertainty Via Dynamic Model Averaging: Application to a Cold Rolling Mill
,”
Technometrics
,
52
(
1
), pp.
52
66
.
4.
Mishra
,
S.
, and
Schwab
,
C.
,
2012
, “
Sparse Tensor Multi-Level Monte Carlo Finite Volume Methods for Hyperbolic Conservation Laws With Random Initial Data
,”
Math. Comput.
,
81
(
280
), pp.
1979
2018
.
5.
Giles
,
M. B.
,
2008
, “
Multilevel Monte Carlo Path Simulation
,”
Oper. Res.
,
56
(
3
), pp.
607
617
.
6.
Müller
,
F.
,
Meyer
,
D. W.
, and
Jenny
,
P.
,
2014
, “
Solver-Based vs. Grid-Based Multilevel Monte Carlo for Two Phase Flow and Transport in Random Heterogeneous Porous Media
,”
J. Comput. Phys.
,
268
, pp.
39
50
.
7.
Narayan
,
A.
,
Marzouk
,
Y.
, and
Xiu
,
D.
,
2012
, “
Sequential Data Assimilation With Multiple Models
,”
J. Comput. Phys.
,
231
(
1
), pp.
6401
6418
.
8.
Cressie
,
N.
,
1993
,
Statistics for Spatial Data
,
Wiley
,
New York
.
9.
Gourdji
,
S. M.
,
Mueller
,
K. L.
,
Schaefer
,
K.
, and
Michalak
,
A. M.
,
2008
, “
Global Monthly Averaged CO2 Fluxes Recovered Using a Geostatistical Inverse Modeling Approach: 2. Results Including Auxiliary Environmental Data
,”
J. Geophys. Res. Atmos.
,
113
(
D21
), pp.
1
15
.
10.
Rodgers
,
C. D.
,
2000
,
Inverse Methods for Atmospheric Sounding: Theory and Practice
, Vol.
2
,
World Scientific
, Singapore.
11.
Forrester
,
A. I.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization Via Surrogate Modelling
,”
Proc. R. Soc. A
,
463
(
2088
), pp.
3251
3269
.
12.
Xiong
,
Y.
,
Chen
,
W.
, and
Tsui
,
K.-L.
,
2008
, “
A New Variable-Fidelity Optimization Framework Based on Model Fusion and Objective-Oriented Sequential Sampling
,”
ASME J. Mech. Des.
,
130
(
11
), p.
111401
.
13.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.
14.
Park
,
C.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2016
, “
Remarks on Multi-Fidelity Surrogates
,”
Struct. Multidiscip. Optim.
,
55
(
3
), pp.
1029
1050
.https://doi.org/10.1007/s00158-016-1550-y
15.
Higdon
,
D.
,
Kennedy
,
M.
,
Cavendish
,
J. C.
,
Cafeo
,
J. A.
, and
Ryne
,
R. D.
,
2004
, “
Combining Field Data and Computer Simulations for Calibration and Prediction
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
448
466
.
16.
Le Gratiet
,
L.
,
2013
, “
Bayesian Analysis of Hierarchical Multifidelity Codes
,”
SIAM/ASA J. Uncertainty Quantif.
,
1
(
1
), pp.
244
269
.
17.
Huang
,
D.
,
Allen
,
T.
,
Notz
,
W.
, and
Miller
,
R.
,
2006
, “
Sequential Kriging Optimization Using Multiple-Fidelity Evaluations
,”
Struct. Multidiscip. Optim.
,
32
(
5
), pp.
369
382
.
18.
Zhou
,
Q.
,
Shao
,
X.
,
Jiang
,
P.
,
Gao
,
Z.
,
Wang
,
C.
, and
Shu
,
L.
,
2016
, “
An Active Learning Metamodeling Approach by Sequentially Exploiting Difference Information From Variable-Fidelity Models
,”
Adv. Eng. Inf.
,
30
(
3
), pp.
283
297
.
19.
Williams
,
C. K.
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
20.
Gramacy
,
R. B.
, and
Lee
,
H. K.
,
2008
, “
Bayesian Treed Gaussian Process Models With an Application to Computer Modeling
,”
J. Am. Stat. Assoc.
,
103
(
483
), pp.
1119
1130
.
21.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100908
.
22.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
23.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
,
Design and Analysis of Computer Experiments
(Statistical Science), JSTOR, New York, pp.
409
423
.
24.
Gregory
,
N.
, and
O'reilly
,
C.
,
1973
, “
Low-Speed Aerodynamic Characteristics of NACA 0012 Aerofoil Section, Including the Effects of Upper-Surface Roughness Simulating Hoar Frost
,” HM Stationery Office, London, Report No.
3726
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.227.696&rep=rep1&type=pdf
25.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
26.
Voyles
,
I. T.
, and
Roy
,
C. J.
,
2015
, “
Evaluation of Model Validation Techniques in the Presence of Aleatory and Epistemic Input Uncertainties
,”
AIAA
Paper No. 2015-1374.https://doi.org/10.2514/6.2015-1374
27.
Voyles
,
I.
, and
Roy
,
C.
,
2014
, “
Evaluation of Model Validation Techniques in the Presence of Uncertainty
,”
AIAA
Paper No. 2014-0120.https://doi.org/10.2514/6.2014-0120
28.
Anderson
,
J. D.
, Jr.
,
1985
,
Fundamentals of Aerodynamics
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.