We demonstrate a statistical procedure for learning a high-order eddy viscosity model (EVM) from experimental data and using it to improve the predictive skill of a Reynolds-averaged Navier–Stokes (RANS) simulator. The method is tested in a three-dimensional (3D), transonic jet-in-crossflow (JIC) configuration. The process starts with a cubic eddy viscosity model (CEVM) developed for incompressible flows. It is fitted to limited experimental JIC data using shrinkage regression. The shrinkage process removes all the terms from the model, except an intercept, a linear term, and a quadratic one involving the square of the vorticity. The shrunk eddy viscosity model is implemented in an RANS simulator and calibrated, using vorticity measurements, to infer three parameters. The calibration is Bayesian and is solved using a Markov chain Monte Carlo (MCMC) method. A 3D probability density distribution for the inferred parameters is constructed, thus quantifying the uncertainty in the estimate. The phenomenal cost of using a 3D flow simulator inside an MCMC loop is mitigated by using surrogate models (“curve-fits”). A support vector machine classifier (SVMC) is used to impose our prior belief regarding parameter values, specifically to exclude nonphysical parameter combinations. The calibrated model is compared, in terms of its predictive skill, to simulations using uncalibrated linear and CEVMs. We find that the calibrated model, with one quadratic term, is more accurate than the uncalibrated simulator. The model is also checked at a flow condition at which the model was not calibrated.

References

References
1.
Poroseva
,
S.
, and
Iaccarino
,
G.
,
2001
, “
Simulating Separated Flows Using the kε Model
,”
Center for Turbulence Research
,
Stanford University
, Stanford, CA, pp. 375–383.https://web.stanford.edu/group/ctr/ResBriefs01/poroseva2.pdf
2.
Sjögren
,
T.
, and
Johansson
,
A. V.
,
2000
, “
Development and Calibration of Algebraic Nonlinear Models for Terms in the Reynolds Stress Transport Equation
,”
Phys. Fluids
,
12
(
6
), pp.
1554
1572
.
3.
Durbin
,
P. A.
,
1995
, “
Separated Flow Computations Using the kεv2 Model
,”
AIAA J.
,
33
(
4
), pp.
659
664
.
4.
Ray
,
J.
,
Lefantzi
,
S.
,
Arunajatesan
,
S.
, and
Dechant
,
L.
,
2016
, “
Bayesian Parameter Estimation of a k-Epsilon Model for Accurate Jet-in-Crossflow Simulations
,”
Am. Inst. Aeronaut. Astronaut. J.
,
54
(
8
), pp.
2432
2448
.
5.
Craft
,
T. J.
,
Launder
,
B. E.
, and
Suga
,
K.
,
1996
, “
Development and Application of a Cubic Eddy-Viscosity Model of Turbulence
,”
Int. J. Heat Fluid Flow
,
17
(
2
), pp.
108
115
.
6.
Beresh
,
S. J.
,
Henfling
,
J. F.
,
Erven
,
R. J.
, and
Spillers
,
R. W.
,
2005
, “
Penetration of a Transverse Supersonic Jet Into a Subsonic Compressible Crossflow
,”
AIAA J.
,
43
(
2
), pp.
379
389
.
7.
Beresh
,
S. J.
,
Henfling
,
J. F.
,
Erven
,
R. J.
, and
Spillers
,
R. W.
,
2005
, “
Turbulent Characteristics of a Transverse Supersonic Jet in a Subsonic Compressible Crossflow
,”
AIAA J.
,
43
(
11
), pp.
2385
2394
.
8.
Beresh
,
S. J.
,
Henfling
,
J. F.
,
Erven
,
R. J.
, and
Spillers
,
R. W.
,
2006
, “
Crossplane Velocimetry of a Transverse Supersonic Jet in a Transonic Crossflow
,”
Am. Inst. Aeronaut. Astronaut. J.
,
44
(
12
), pp.
3051
3061
.
9.
Arunajatesan
,
S.
,
2012
, “
Evaluation of Two-Equation RANS Models for Simulation of Jet-in-Crossflow Problems
,”
AIAA
Paper No. 2012-1199.
10.
Chai
,
X.
, and
Mahesh
,
K.
,
2011
, “
Simulations of High Speed Turbulent Jets in Crossflow
,”
AIAA
Paper No. 2010-4603.
11.
Genin
,
F.
, and
Menon
,
S.
,
2010
, “
Dynamics of Sonic Jet Injection Into Supersonic Crossflow
,”
J. Turbul.
,
11
, pp.
1
13
.
12.
Brinckman
,
K. W.
,
Calhoon
,
W. H.
, and
Dash
,
S. M.
,
2007
, “
Scalar Fluctuation Modeling for High-Speed Aeropropulsive Flows
,”
AIAA J.
,
45
(
5
), pp.
1036
1046
.
13.
Papp
,
J. L.
, and
Dash
,
S. M.
,
2001
, “
Turbulence Model Unification and Assessment for High-Speed Aeropropulsive Flows
,”
AIAA
Paper No. 2001-0880.
14.
Edeling
,
W. N.
,
Cinnella
,
P.
,
Dwight
,
R. P.
, and
Bijl
,
H.
,
2014
, “
Bayesian Estimates of Parameter Variability in kε Turbulence Model
,”
J. Comput. Phys.
,
258
, pp.
73
94
.
15.
Cheung
,
S. H.
,
Oliver
,
T. A.
,
Prudencio
,
E. E.
,
Prudhomme
,
S.
, and
Moser
,
R. D.
,
2011
, “
Bayesian Uncertainty Analysis With Applications to Turbulence Modeling
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
1137
1149
.
16.
Gilks
,
W. R.
,
Richardson
,
S.
, and
Spiegelhalter
,
D. J.
, eds.,
1996
,
Markov Chain Monte Carlo in Practice
,
Chapman & Hall/CRC Press
,
Boca Raton, FL
.
17.
Duraisamy
,
K.
,
Zhang
,
Z. J.
, and
Singh
,
A. P.
,
2015
, “
New Approaches in Turbulence and Transition Modeling Using Data-Driven Techniques
,”
AIAA
Paper No. 2015-1284.
18.
Zhang
,
Z. J.
, and
Duraisamy
,
K.
,
2015
, “
Machine Learning Methods for Data-Driven Turbulence Modeling
,”
AIAA
Paper No. 2015-2460.
19.
Zhang
,
Z.
,
Duraisamy
,
K.
, and
Gumerov
,
N. A.
,
2015
, “
Efficient Multiscale Gaussian Process Regression Using Hierarchical Clustering
,” e-print
arXiv:1511.02258
.https://arxiv.org/abs/1511.02258
20.
Pratap Singh
,
A.
,
Medida
,
S.
, and
Duraisamy
,
K.
,
2016
, “
Machine Learning-Augmented Predictive Modeling of Turbulent Separated Flows Over Airfoils
,” e-print
arXiv:1608.03990
.https://arxiv.org/abs/1608.03990
21.
Singh
,
A. P.
, and
Duraisamy
,
K.
,
2016
, “
Using Field Inversion to Quantify Functional Errors in Turbulence Closures
,”
Phys. Fluids
,
28
(
4
), p.
045110
.
22.
Xiao
,
H.
,
Wu
,
J.-L.
,
Wang
,
J.-X.
,
Sun
,
R.
, and
Roy
,
C.
,
2016
, “
Quantifying and Reducing Model-Form Uncertainties in Reynolds-Averaged Navier–Stokes Simulations: A Data-Driven, Physics-Informed Bayesian Approach
,”
J. Comput. Phys.
,
324
, pp.
115
136
.
23.
Wang
,
J.-X.
,
Wu
,
J.-L.
, and
Xiao
,
H.
,
2016
, “
A Physics Informed Machine Learning Approach for Reconstructing Reynolds Stress Modeling Discrepancies Based on DNS Data
,” e-print
arXiv:1606.07987
.https://arxiv.org/pdf/1606.07987.pdf
24.
Wu
,
J.-L.
,
Wang
,
J.-X.
,
Xiao
,
H.
, and
Ling
,
J.
,
2016
, “
Physics-Informed Machine Learning for Predictive Turbulence Modeling: A Priori Assessment of Prediction Confidence
,” e-print
arXiv:1607.04563
.https://www.researchgate.net/publication/305390200_Physics-Informed_Machine_Learning_for_Predictive_Turbulence_Modeling_A_Priori_Assessment_of_Prediction_Confidence
25.
Weatheritt
,
J.
, and
Sandberg
,
R.
,
2016
, “
A Novel Evolutionary Algorithm Applied to Algebraic Modifications of the RANS Stress–Strain Relationship
,”
J. Comput. Phys.
,
325
, pp.
22
37
.
26.
Guillas
,
S.
,
Glover
,
N.
, and
Malki-Epshtein
,
L.
,
2014
, “
Bayesian Calibration of the Constants of the kε Turbulence Model for a CFD Model of Street Canyon Flow
,”
Comput. Methods Appl. Mech. Eng.
,
279
, pp.
536
553
.
27.
Haario
,
H.
,
Laine
,
M.
,
Mira
,
A.
, and
Saksman
,
E.
,
2006
, “
DRAM-Efficient Adaptive MCMC
,”
Stat. Comput.
,
16
(
4
), pp.
339
354
.
28.
Parish
,
E.
, and
Duraisamy
,
K.
,
2015
, “
Quantification of Turbulence Modeling Uncertainties Using Full Field Inversions
,”
AIAA
Paper No. 2015-2459.
29.
Bazdidi-Tehrani
,
F.
,
Mohammadi-Ahmar
,
A.
,
Kianamsouri
,
M.
, and
Jadidi
,
M.
,
2015
, “
Investigation of Various Non-Linear Eddy Viscosity Turbulence Models for Simulating Flow and Pollutant Dispersion on and Around a Cubical Model Building
,”
Build. Simul.
,
8
(
2
), pp.
149
166
.
30.
Loyau
,
H.
,
Batten
,
P.
, and
Leschziner
,
M. A.
,
1998
, “
Modelling Shock/Boundary-Layer Interaction With Nonlinear Eddy-Viscosity Closures
,”
Flow Turbul. Combust.
,
60
(
3
), pp.
257
282
.
31.
Balabel
,
A.
, and
El-Askary
,
W. A.
,
2011
, “
On the Performance of Linear and Nonlinear k–ε Turbulence Models in Various Jet Flow Applications
,”
Eur. J. Mech. B/Fluids
,
30
(
3
), pp.
325
340
.
32.
Craft
,
T. J.
,
Launder
,
B. E.
, and
Suga
,
K.
,
1997
, “
Prediction of Turbulent Transitional Phenomena With a Nonlinear Eddy-Viscosity Model
,”
Int. J. Heat Fluid Flow
,
18
(
1
), pp.
15
28
.
33.
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
On Explicit Algebraic Stress Models for Complex Turbulent Flows
,” Institute for Computer Application in Science and Engineering, NASA Langley Research Center, Hampton, VA, Technical Report No.
92-58
.http://www.dtic.mil/dtic/tr/fulltext/u2/a258993.pdf
34.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2008
,
The Elements of Statistical Learning
(Springer Series in Statistics),
2 ed.
,
Springer
,
New York
.
35.
R Core Team
,
2012
, “
R: A Language and Environment for Statistical Computing
,” R Foundation for Statistical Computing, Vienna, Austria.
36.
Friedman
,
J.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2010
, “
Regularization Paths for Generalized Linear Models Via Coordinate Descent
,”
J. Stat. Software
,
33
(
1
), pp.
1
22
.
37.
Soetaert
,
K.
, and
Petzoldt
,
T.
,
2010
, “
Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME
,”
J. Stat. Software
,
33
(
3
), pp.
1
28
.
38.
Raftery
,
A.
, and
Lewis
,
S. M.
,
1996
, “
Implementing MCMC
,”
Markov Chain Monte Carlo in Practice
,
W. R.
Gilks
,
S.
Richardson
, and
D. J.
Spiegelhalter
, eds.,
Chapman & Hall/CRC Press
,
Boca Raton, FL
, pp.
115
130
.
39.
Warnes
,
G. R.
, and
Burrows
,
R.
,
2011
, “
Mcgibbsit: Warnes and Raftery's MCGibbsit MCMC Diagnostic. R Package Version 1.0.8
,” accessed Aug. 15, 2017, https://artax.karlin.mff.cuni.cz/r-help/library/mcgibbsit/html/mcgibbsit.html
You do not currently have access to this content.