Finite element (FE) models are commonly used for automotive body design. However, even with increasing speed of computers, the FE-based simulation models are still too time-consuming when the models are complex. To improve the computational efficiency, support vector regression (SVR) model, a potential approximate model, has been widely used as the surrogate of FE model for crashworthiness optimization design. Generally, in the traditional SVR, when dealing with nonlinear data, the single kernel function-based projection cannot fully cover data distribution characteristics. In order to eliminate the application limitations of single kernel SVR, a method for reliability-based design optimization (RBDO) based on mixed-kernel-based SVR (MKSVR) is proposed in this research. The mixed kernel is constructed based on the linear combination of radial basis kernel function and polynomial kernel function. Through the particle swarm optimization (PSO) algorithm, the parameters of the mixed kernel SVR are optimized. The proposed method is demonstrated through a representative analytical RBDO problem and a vehicle lightweight design problem. And the comparitive studies for SVR and MKSVR in application indicate that MKSVR surpasses SVR in model accuracy.

References

References
1.
Yang
,
R. J.
,
Akkerman
,
A.
, and
Anderson
,
D. F.
,
2000
, “
Robustness Optimization for Vehicular Crash Simulations
,”
Comput. Sci. Eng.
,
2
(
6
), pp.
8
13
.
2.
Zhan
,
Z.
,
Fu
,
Y.
,
Yang
,
R. J.
, and
Peng
,
Y. H.
,
2011
, “
An Automatic Model Calibration Method for Occupant Restraint Systems
,”
Struct. Multidiscip. Optim.
,
44
(
6
), pp.
815
822
.
3.
Gu
,
X.
,
Sun
,
G.
,
Li
,
G.
,
Huang
,
X.
,
Li
,
Y.
, and
Li
,
Q.
,
2013
, “
Multiobjective Optimization Design for Vehicle Occupant Restraint System Under Frontal Impact
,”
Struct. Multidiscip. Optim.
,
47
(
3
), pp.
465
477
.
4.
Viana
,
F. A. C.
,
Haftka
,
R. T.
, and
Steffen
,
V.
, Jr.
,
2009
, “
Multiple Surrogates: How Cross-Validation Errors Can Help us to Obtain the Best Predictor
,”
Struct. Multidiscip. Optim.
,
39
(
4
), pp.
439
457
.
5.
Simpson
,
T. W.
,
Poplinski
,
J. D.
,
Koch
,
P. N.
, and
Allen
,
J. K.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
.
6.
Wang
,
G. G.
, and
Shan
,
S.
,
2006
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(4), pp. 370–380.
7.
Vapnik
,
V.
,
Golowich
,
S. E.
, and
Smola
,
A.
,
1997
, “
Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing
,”
Adv. Neural Inf. Process. Syst.
,
9
(3), pp.
281
287
.http://www.kernel-machines.org/publications/VapGolSmo97
8.
Rafiq
,
M. Y.
,
Bugmann
,
G.
, and
Easterbrook
,
D. J.
,
2001
, “
Neural Network Design for Engineering Applications
,”
Comput. Struct.
,
79
(
17
), pp.
1541
1552
.
9.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodeling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
1
13
.
10.
Clarke
,
S. M.
,
Griebsch
,
J. H.
, and
Simpson
,
T. W.
,
2005
, “
Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1077
1087
.
11.
Guoqi
,
X.
, and
Dagui
,
H.
,
2010
, “
A Metamodeling Method Based on Support Vector Regression for Robust Optimization
,”
Chin. J. Mech. Eng.
,
23
(
2
), pp.
242
251
.
12.
Zhu
,
P.
,
Pan
,
F.
,
Chen
,
W.
, and
Zhang
,
S.
,
2012
, “
Use of Support Vector Regression in Structural Optimization: Application to Vehicle Crashworthiness Design
,”
Math. Comput. Simul.
,
86
(
3
), pp.
21
31
.
13.
Drucker, H.
,
Burges, C. J. C.
,
Kaufman, L.
,
Smola
,
A.
, and
Vapnik
,
V.
,
1997
, “
Support Vector Regression Machines
,”
Adv. Neural Inf. Process. Syst.
,
9
, pp.
155
161
.https://pdfs.semanticscholar.org/14b4/f0e8e2a12eb10cfa5e6aed7cff8df8637757.pdf
14.
Chapelle
,
O.
,
Vapnik
,
V.
, and
Bousquet
,
O.
,
2002
, “
Choosing Multiple Parameters for Support Vector Machines
,”
Mach. Learn.
,
46
(
1–3
), pp.
131
159
.
15.
Kennedy, J.
, and
Eberhart, R.
,
2002
, “
Particle Swarm Optimization
,”
IEEE Int. Conf. Neural Networks.
,
4
(8), pp. 1942–1948.https://www.cs.tufts.edu/comp/150GA/homeworks/hw3/_reading6%201995%20particle%20swarming.pdf
16.
Sano
,
N.
,
Higashinaka
,
K.
, and
Suzuki
,
T.
,
2014
, “
Efficient Parameter Selection for Support Vector Regression Using Orthogonal Array
,”
IEEE International Conference on Systems
, Man, and Cybernetics (
SMC
), San Diego, CA, Oct. 5–8, pp.
2256
2261
.
17.
Kim
,
C.
,
2008
, “
Reliability-Based Design Optimization Using Response Surface Method With Prediction Interval Estimation
,”
ASME J. Mech. Des.
,
130
(
12
), p.
121401
.
18.
Yang
,
J.
,
Zhan
,
Z.
,
Zheng
,
K.
,
Hu
,
J.
, and
Zheng
,
L.
,
2016
, “
Enhanced Similarity-Based Metamodel Updating Strategy for Reliability-Based Design Optimization
,”
Eng. Optim.
,
48
(12), pp.
2026
2045
.
You do not currently have access to this content.