Corrosion in ship structures is influenced by a variety of factors that are varying in time and space. Existing corrosion models used in practice only partially address the spatial variability of the corrosion process. Typical estimations of corrosion model parameters are based on averaging measurements for one ship type over structural elements from different ships and operational conditions. Most models do not explicitly predict the variability and correlation of the corrosion process among multiple locations in the structure. This correlation is of relevance when determining the necessary inspection coverage, and it can influence the reliability of the ship structure. In this paper, we develop a probabilistic spatiotemporal corrosion model based on a hierarchical approach, which represents the spatial variability and correlation of the corrosion process. The model includes as hierarchical levels vessel–compartment–frame–structural element–plate element. At all levels, variables representing common influencing factors (e.g., coating life) are introduced. Moreover, at the lowest level, which is the one of the plate element, the corrosion process can be modeled as a spatial random field. For illustrative purposes, the model is trained through Bayesian analysis with measurement data from a group of tankers. In this application, the spatial dependence among corrosion processes in different parts of the ships is identified and quantified using the proposed hierarchical model. Finally, how this spatial dependence can be exploited when making inference on the future condition of the ships is demonstrated.

References

References
1.
Gardiner
,
C. P.
, and
Melchers
,
R. E.
,
2003
, “
Corrosion Analysis of Bulk Carriers—Part I: Operational Parameters Influencing Corrosion Rates
,”
Mar. Struct.
,
16
(
8
), pp.
547
566
.
2.
Herzberg
,
E.
,
Chan
,
T.
,
Chang
,
P.
,
Kelly
,
A.
,
Kumaran
,
M.
, and
O'Meara
,
N.
,
2010
, “
The Annual Cost of Corrosion for Navy Ships
,” Report No. MEC81T3.
3.
Guedes Soares
,
C.
,
1988
, “
Reliability of Marine Structures
,”
Reliability Engineering
,
Kluwer Academic Publishers
, Dordrecht, The Netherlands, pp.
513
559
.
4.
Shi
,
W.
,
1993
, “
In-Service Assessment of Ship Structures: Effects of General Corrosion on Ultimate Strength
,”
Trans. R. Inst. Naval Archit.
,
135
, pp.
77
91
.
5.
Melchers
,
R. E.
,
1998
, “
Probabilistic Modelling of Immersion Marine Corrosion
,”
Structural Safety and Reliability
,
N.
Shiraishi
,
M.
Shinozuka
, and
Y. K.
Wen
, eds., Vol.
3
,
Balkema
,
Rotterdam, The Netherlands
, pp.
1143
9
.
6.
Shreir
,
F. F.
,
1976
,
Corrosion
, Vol.
3
,
Newnes-Butterworths
,
London, UK
.
7.
Guedes Soares
,
C.
, and
Garbatov
,
Y.
,
1999
, “
Reliability of Maintained, Corrosion Protected Plates Subjected to Non-Linear Corrosion and Compressive Loads
,”
Mar. Struct.
,
12
(
6
), pp.
425
445
.
8.
Qin
,
S.
, and
Cui
,
W.
,
2003
, “
Effect of Corrosion Models on the Time-Dependent Reliability of Steel Plated Elements
,”
Mar. Struct.
,
16
(
1
), pp.
15
34
.
9.
Melchers
,
R. E.
,
2003
, “
Modeling of Marine Immersion Corrosion for Mild and Low-Alloy Steels—Part 1: Phenomenological Model
,”
Corrosion
,
59
(
4
), pp.
319
334
.
10.
Melchers
,
R. E.
, and
Jeffrey
,
R.
,
2007
, “
Probabilistic Models for Steel Corrosion Loss and Pitting of Marine Infrastructure
,”
Reliab. Eng. Syst. Saf.
,
93
(3), pp.
423
432
.
11.
Paik
,
J. K.
,
Thayamballi
,
A. K.
,
Park
,
Y. I.
, and
Hwang
,
J. S.
,
2004
, “
A Time-Dependent Corrosion Wastage Model for Seawater Ballast Tank Structures of Ships
,”
Corros. Sci.
,
46
(
2
), pp.
471
486
.
12.
Ayyub
,
B. M.
,
Stambaugh
,
K. A.
,
McAllister
,
T. A.
,
de Souza
,
G. F.
, and
Webb
,
D.
,
2015
, “
Structural Life Expectancy of Marine Vessels: Ultimate Strength, Corrosion, Fatigue, Fracture, and Systems
,”
ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
1
(
1
), p.
011001
.
13.
Melchers
,
R. E.
,
1999
, “
Corrosion Uncertainty Modeling for Steel Structures
,”
Constr. Steel Res.
,
52
(
1
), pp.
3
19
.
14.
Southwell
,
C. R.
,
Bultman
,
J. D.
, and
Hummer
, Jr.,
C. W.
,
1979
, “
Estimating of Service Life of Steel in Seawater
,”
Seawater Corrosion Handbook
,
Schumacher
,
M.
, ed.,
Noyes Data Corporation
, Park Ridge,
NJ
, pp.
374
87
.
15.
Straub
,
D.
, and
Faber
,
M. H.
,
2007
, “
Temporal Variability in Corrosion Modeling and Reliability Updating
,”
ASME J. Offshore Mech. Arct. Eng.
,
129
(
4
), pp.
265
272
.
16.
Sone
,
H.
,
Magaino
,
A.
,
Yamamoto
,
N.
, and
Harada
,
S.
,
2003
, “
Evaluation of Thickness Diminution in Steel Plates for the Assessment of Structural Condition of Ships in Service
,” Nippon Kaiji Kyokai (ClassNK) Technical Bulletin, pp.
55
71
.
17.
Wang
,
G.
,
Spencer
,
J.
, and
Elsayed
,
T.
,
2003
, “
Estimation of Corrosion Rates of Structural Members in oil Tankers
,”
ASME
Paper No. OMAE2003-37361.
18.
Wang
,
G.
,
Spencer
,
J.
, and
Sun
,
H.
,
2003
, “
Assessment of Corrosion Risks to Aging Ships Using an Experience Database
,”
ASME
Paper No. OMAE2003-37299.
19.
Guedes Soares
,
C.
, and
Garbatov
,
Y.
,
1997
, “
Reliability Assessment of Maintained Ship Hulls With Correlated Corroded Elements
,”
Mar. Struct.
,
10
(8–10), pp.
629
653
.
20.
Andrade
,
A. R.
, and
Teixeira
,
P. F.
,
2015
, “
Statistical Modelling of Railway Track Geometry Degradation Using Hierarchical Bayesian Models
,”
Reliab. Eng. Syst. Saf.
,
142
, pp.
169
183
.
21.
Maes
,
M.
,
2002
, “
Updating Performance and Reliability of Concrete Structures Using Discrete Empirical Bayes Methods
,”
ASME J. Offshore Mech. Arct. Eng.
,
124
(
4
), pp.
239
244
.
22.
Qin
,
J.
, and
Faber
,
M. H.
,
2012
, “
Risk Management of Large RC Structures Within Spatial Information System
,”
Comput.-Aided Civil Infrastruct. Eng.
,
27
(
6
), pp.
385
405
.
23.
Schneider
,
R.
,
Fischer
,
J.
,
Buügler
,
M.
,
Nowak
,
M.
,
Thöns
,
S.
,
Borrmann
,
A.
, and
Straub
,
D.
,
2015
, “
Assessing and Updating the Reliability of Concrete Bridges Subjected to Spatial Deterioration–Principles and Software Implementation
,”
Struct. Concr.
,
16
(
3
), pp.
356
365
.
24.
Straub
,
D.
,
Malioka
,
V.
, and
Faber
,
M. H.
,
2009
, “
A Framework for the Asset Integrity Management of Large Deteriorating Concrete Structures
,”
Struct. Infrastruct. Eng.
,
5
(
3
), pp.
199
213
.
25.
Luque
,
J.
,
Hamann
,
R.
, and
Straub
,
D.
,
2014
, “
Spatial Model for Corrosion in Ships and FPSOs
,”
ASME
Paper No. OMAE2014-23062.
26.
Qin
,
H.
,
Zhou
,
W.
, and
Zhang
,
S.
,
2015
, “
Bayesian Inferences of Generation and Growth of Corrosion Defects on Energy Pipelines Based on Imperfect Inspection Data
,”
Reliab. Eng. Syst. Saf.
,
144
, pp.
334
342
.
27.
Zhang
,
S.
,
Zhou
,
W.
,
Al-Amin
,
M.
,
Kariyawasam
,
S.
, and
Wang
,
H.
,
2014
, “
Time-Dependent Corrosion Growth Modeling Using Multiple ILI Data
,”
ASME J. Pressure Vessel Technol.
,
136
(4), p. 041202.
28.
Raudenbush
,
S. W.
, and
Bryk
,
A. S.
,
2008
,
Hierarchical Linear Models, Applications and Data Analysis Methods
,
2nd ed.
,
SAGE Publications
, Thousand Oaks,
CA
.
29.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
, and
Rubin
,
D. B.
,
2004
,
Bayesian Data Analysis
,
2nd ed.
,
Chapman and Hall/CRC
, Boca Raton,
FL
.
30.
Maes
,
M.
,
Dann
,
M.
,
Breitung
,
K.
, and
Brehm
,
E.
,
2008
, “
Hierarchical Modeling of Stochastic Deterioration
,”
Graubner, Schmidt and Proske: Proceedings of the 6th International Probabilistic Workshop
, Darmstadt, Germany, pp. 101–116.
31.
Ntzoufras
,
I.
,
2009
,
Bayesian Modeling Using WinBUGS
,
Wiley
, Hoboken,
NJ
.
32.
Jensen
,
F.
, and
Nielsen
,
T.
,
2007
,
Bayesian Networks and Decision Graphs
,
2nd ed.
,
Springer
,
New York
.
33.
Straub
,
D.
,
2009
, “
Stochastic Modeling of Deterioration Processes Through Dynamic Bayesian Networks
,”
ASCE J. Eng. Mech.
,
135
(
10
), pp.
1089
1099
.
34.
Gamerman
,
D.
, and
Lopes
,
H. F.
,
2006
,
Markov Chain Monte Carlo, Stochastic Simulation for Bayesian Inference
,
2nd ed.
,
Chapman and Hall/CRC
, Boca Raton,
FL
.
35.
Germanischer Lloyd Group
,
2009
,
Rules for Classification and Construction: II Materials and Welding
,
Germanischer Lloyd Aktiengesellschaft
,
Hamburg, Germany
.
36.
Vanmarcke
,
E. H.
,
2010
,
Random Fields, Analysis and Synthesis
,
World Scientific Publishing
, Singapore.
37.
Gilks
,
W. R.
,
Richardson
,
S.
, and
Spiegelhalter
,
D. J.
,
1996
,
Markov Chain Monte Carlo in Practice
,
Chapman and Hall/CRC
, London.
38.
Lunn
,
D.
,
Spiegelhalter
,
D.
,
Thomas
,
A.
, and
Best
,
N.
,
2009
, “
The BUGS Project: Evolution, Critique and Future Directions (With Discussion)
,”
Stat. Med.
,
28
(
25
), pp.
3049
3082
.
You do not currently have access to this content.