It is well known that mechanical parameters of polymeric materials, e.g., epoxy resin, are strongly influenced by the temperature. On the other hand, in many applications, the temperature is not known exactly during the design process and this introduces uncertainties in the prevision of the behavior also when the stresses are deterministic. For this reason, in this paper, the mechanical behavior of an epoxy resin is characterized by means of a fractional viscoelastic model at different temperatures; then, a simple method to characterize the response of the fractional viscoelastic material at different temperatures modeled as a random variable with assigned probability density function (PDF) subjected to deterministic stresses is presented. It is found that the first- and second-order statistical moments of the response can be easily evaluated only by the knowledge of the PDF of the temperature and the behavior of the parameters with the temperature. Comparison with Monte Carlo simulations is also performed in order to assess the accuracy and the reliability of the method.

References

References
1.
Nutting
,
P. G.
,
1921
, “
A New General Law of Deformation
,”
J. Frank. Inst.
,
191
(
5
), pp.
679
685
.
2.
Di Paola
,
M.
,
Pirrotta
,
A.
, and
Valenza
,
A.
,
2011
, “
Visco-Elastic Behavior Through Fractional Calculus: An Easier Method for Best Fitting Experimental Results
,”
Mech. Mater.
,
43
(
12
), pp.
799
806
.
3.
Di Paola
,
M.
,
Fiore
,
V.
,
Pinnola
,
F. P.
, and
Valenza
,
A.
,
2014
, “
On the Influence of the Initial Ramp for a Correct Definition of the Parameters of Fractional Viscoelastic Materials
,”
Mech. Mater.
,
69
(
1
), pp.
63
70
.
4.
Gemant
,
A.
,
1936
, “
A Method of Analyzing Experimental Results Obtained From Elasto-Viscous Bodies
,”
J. Phys.
,
7
(8), pp.
311
317
.
5.
Scott Blair
,
G. W.
, and
Caffyn
,
J. E.
,
1949
, “
An Application of the Theory of Quasi-Properties to the Treatment of Anomalous Strain-Stress Relations
,”
Philos. Mag.
,
40
(
300
), pp.
80
94
.
6.
Caputo
,
M.
,
1967
, “
Linear Models of Dissipation Whose Q Is Almost Frequency Independent-II
,”
Geophys. J. R. Astron. Soc.
,
13
(
5
), pp.
529
539
.
7.
Caputo
,
M.
,
1969
,
Elasticità e Dissipazione
,
Zanichelli
,
Bologna, Italy
.
8.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1986
, “
On the Fractional Calculus Model of Viscoelastic Behavior
,”
J. Rheol.
,
30
(
1
), pp.
133
155
.
9.
Schiessel
,
H.
, and
Blumen
,
A.
,
1993
, “
Hierarchical Analogues to Fractional Relaxation Equations
,”
J. Phys. A Math. Gen.
,
26
(
19
), pp.
5057
5069
.
10.
Heymans
,
N.
, and
Bauwens
,
J. C.
,
1994
, “
Fractal Rheological Models and Fractional Differential Equations for Viscoelastic Behavior
,”
Rheol. Acta
,
33
(
3
), pp.
210
219
.
11.
Soczkiewicz
,
K.
,
2002
, “
Application of Fractional Calculus in the Theory of Viscoelasticity
,”
Mol. Quantum Acoust.
,
23
, pp.
397
404
.
12.
Mainardi
,
F.
,
2010
,
Fractional Calculus and Waves in Linear Viscoelasticity An Introduction to Mathematical Models
,
Imperial College Press
,
London
.
13.
Alotta
,
G.
,
Di Paola
,
M.
, and
Pirrotta
,
A.
,
2014
, “
Fractional Tajimi-Kanai Model for Simulating Earthquake Ground Motion
,”
Bull. Earthquake Eng.
,
12
(
6
), pp.
2495
2506
.
14.
Alotta
,
G.
,
Failla
,
G.
, and
Zingales
,
M.
,
2015
, “
Finite-Element Formulation of a Nonlocal Hereditary Fractional-Order Timoshenko Beam
,”
ASCE J. Eng. Mech.
,
143
(
5
), epub.
15.
Alotta
,
G.
,
Barrera
,
O.
,
Cocks
,
A. C. F.
, and
Di Paola
,
M.
,
2016
, “
On the Behavior of a Three-Dimensional Fractional Viscoelastic Constitutive Model
,”
Meccanica
, epub.
16.
Di Paola
,
M.
,
Pinnola
,
F. P.
, and
Zingales
,
M.
,
2013
, “
A Discrete Mechanical Model of Fractional Hereditary Materials
,”
J. Mecc.
,
48
(
7
), pp.
1573
1586
.
17.
Di Paola
,
M.
,
Pinnola
,
F. P.
, and
Zingales
,
M.
,
2013
, “
Fractional Differential Equations and Related Exact Mechanical Models
,”
Comput. Math. Appl.
,
66
(
5
), pp.
608
620
.
18.
Di Mino
,
G.
,
Airey
,
G.
,
Di Paola
,
M.
,
Pinnola
,
F. P.
,
D'Angelo
,
G.
, and
Lo Presti
,
D.
,
2016
, “
Linear and Nonlinear Fractional Hereditary Constitutive Laws of Asphalt Mixtures
,”
J. Civil Eng. Manage.
,
22
(
7
), pp.
882
889
.
19.
Colinas-Armijo
,
N.
,
Cottone
,
G.
, and
Di Paola
,
M.
,
2016
, “
Viscoelastic Modeling by Katugampola Fractional Derivative
,”
Tenth International Conference on the Mechanics of Time Dependent Materials
, Paris, France, May 17–20.
20.
Di Lorenzo
,
S.
,
Di Paola
,
M.
,
Pinnola
,
F. P.
, and
Pirrotta
,
A.
,
2013
, “
Stochastic Response of Fractionally Damped Beams
,”
Probab. Eng. Mech.
,
35
, pp.
37
43
.
21.
Pirrotta
,
A.
,
Cutrona
,
S.
, and
Di Lorenzo
,
S.
,
2015
, “
Fractional Visco-Elastic Timoshenko Beam From Elastic Euler-Bernoulli Beam
,”
Acta Mech.
,
226
(
1
), pp.
179
189
.
22.
Spanos
,
P. D.
, and
Evangelatos
,
G. I.
,
2010
, “
Response of a Non-Linear System With Restoring Forces Governed by Fractional Derivatives-Time Domain Simulation and Statistical Linearization Solution
,”
Soil Dyn. Earthquake Eng.
,
30
(
9
), pp.
811
821
.
23.
Di Paola
,
M.
,
Failla
,
G.
, and
Pirrotta
,
A.
,
2012
, “
Stationary and Non-Stationary Stochastic Response of Linear Fractional Viscoelastic Systems
,”
Probab. Eng. Mech.
,
28
, pp.
85
90
.
24.
Colinas-Armijo
,
N.
,
Di Paola
,
M.
, and
Pinnola
,
F. P.
,
2016
, “
Fractional Characteristic Times and Dissipated Energy in Fractional Linear Viscoelasticity
,”
Commun. Nonlinear Sci. Numer. Simul.
,
37
, pp.
14
30
.
25.
Williams
,
M. L.
,
Landel
,
R. F.
, and
Ferry
,
J. D.
,
1955
, “
The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids
,”
J. Am. Chem. Soc.
,
77
(
14
), pp.
3701
3707
.
26.
Gross
,
B.
,
1968
,
Mathematical Structure of the Theories of Viscoelasticity
,
Hermann et Cie
,
Paris, France
.
27.
Ferry
,
J. D.
,
1980
,
Viscoelastic Properties of Polymers
,
Wiley
, New York.
28.
Dealy
,
J.
, and
Plazek
,
D.
,
2009
, “
Time-Temperature Superposition—A Users Guide
,”
J. Rheol. Bull.
,
78
(2), pp.
16
31
.
29.
Bueche
,
F.
,
1954
, “
The Viscoelastic Properties of Plastics
,”
J. Chem. Phys.
,
22
(
4
), pp.
603
609
.
30.
Podlubny
,
I.
,
2000
, “
Matrix Approach to Discrete Fractional Calculus
,”
Fract. Calculus Appl. Anal.
,
3
(
4
), pp.
359
386
.
31.
Christensen
,
R. M.
,
1982
,
Theory of Viscoelasticity
,
Academic Press
,
New York
.
32.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
33.
Schiessel
,
H.
,
Metzler
,
R.
,
Blumen
,
A.
, and
Nonnenmacher
,
T. F.
,
1995
, “
Generalized Viscoelastic Models: Their Fractional Equations With Solutions
,”
J. Phys. A: Math. Gen.
,
28
(
23
), pp.
6567
6584
.
34.
Badagliacco
,
D.
,
Colinas-Armijo
,
N.
,
Di Paola
,
M.
, and
Valenza
,
A.
,
2016
, “
Evaluation of the Temperature Effect on the Fractional Linear Viscoelastic Model for an Epoxy Resin
,”
AIP Conf. Proc.
,
1736
(1), p.
020089
.
35.
Badagliacco
,
D.
,
Colinas-Armijo
,
N.
,
Di Paola
,
M.
, and
Valenza
,
A.
,
2017
, “
Time-Temperature Superposition Principle Through Fractional Characteristic Times - Experimental Evidence on Epoxy Resin
,”
J. Mech. Phys. Solids,
(submitted).
36.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
1991
,
Topics in Matrix Analysis
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.