In this paper, the probabilistic response of nonlinear systems driven by alpha-stable Lévy white noises is considered. The path integral solution is adopted for determining the evolution of the probability density function of nonlinear oscillators. Specifically, based on the properties of alpha-stable random variables and processes, the path integral solution is extended to deal with Lévy white noises input with any value of the stability index alpha. It is shown that at the limit when the time increments tend to zero, the Einstein–Smoluchowsky equation, governing the evolution of the response probability density function, is fully restored. Application to linear and nonlinear systems under different values of alpha is reported. Comparisons with pertinent Monte Carlo simulation data and analytical solutions (when available) demonstrate the accuracy of the results.

References

References
1.
Risken
,
H.
,
1996
,
The Fokker Planck Equation
,
Springer
,
Berlin
.
2.
Wehner
,
M. F.
, and
Wolfer
,
W. G.
,
1983
, “
Numerical Evaluation of Path-Integral Solutions to Fokker-Planck Equations
,”
Phys. Rev. A
,
27
(
5
), pp.
2663
2670
.
3.
Barone
,
G.
,
Navarra
,
G.
, and
Pirrotta
,
A.
,
2008
, “
Probabilistic Response of Linear Structures Equipped With Nonlinear Damper Devices (PIS Method)
,”
Probab. Eng. Mech.
,
23
(2–3), pp.
125
133
.
4.
Naess
,
A.
, and
Moe
,
V.
,
2000
, “
Efficient Path Integration Method for Nonlinear Dynamic Systems
,”
Probab. Eng. Mech.
,
15
(
2
), pp.
221
231
.
5.
Iourtchenko
,
D. V.
,
Mo
,
E.
, and
Naess
,
A.
,
2006
, “
Response Probability Density Functions of Strongly Non-Linear Systems by the Path Integration Method
,”
Int. J. Nonlinear Mech.
,
41
(
5
), pp.
693
705
.
6.
Di Paola
,
M.
, and
Santoro
,
R.
,
2008
, “
Non-Linear Systems Under Poisson White Noise Handled by Path Integral Solution
,”
J. Vib. Control
,
14
(1–2), pp.
35
49
.
7.
Di Paola
,
M.
, and
Santoro
,
R.
,
2008
, “
Path Integral Solution for Non-Linear System Enforced by Poison White Noise
,”
Probab. Eng. Mech.
,
23
(2–3), pp.
164
169
.
8.
Pirrotta
,
A.
, and
Santoro
,
R.
,
2011
, “
Probabilistic Response of Nonlinear Systems Under Combined Normal and Poisson White Noise Via Path Integral Method
,”
Probab. Eng. Mech.
,
26
(
1
), pp.
26
32
.
9.
Di Matteo
,
A.
,
Di Paola
,
M.
, and
Pirrotta
,
A.
,
2016
, “
Path Integral Solution for Nonlinear Systems Under Parametric Poissonian White Noise Input
,”
Probab. Eng. Mech.
,
44
, pp.
89
98
.
10.
Naess
,
A.
,
Iourtchenko
,
D. V.
, and
Batsevych
,
O.
,
2011
, “
Reliability of Systems With Randomly Varying Parameters Via a Path Integration Method
,”
Probab. Eng. Mech.
,
26
(
1
), pp.
5
9
.
11.
Bucher
,
C.
,
Di Matteo
,
A.
,
Di Paola
,
M.
, and
Pirrotta
,
A.
,
2016
, “
First-Passage Problem for Nonlinear Systems Under Lévy White Noise Through Path Integral Method
,”
Nonlinear Dyn.
,
85
(
3
), pp.
1445
1456
.
12.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2014
, “
Stochastic Response Analysis of Softening Duffing Oscillator and Ship Capsizing Probability Determination Via Numerical Path Integral Approach
,”
Probab. Eng. Mech.
,
35
, pp.
67
74
.
13.
Bucher
,
C.
, and
Di Paola
,
M.
,
2015
, “
Efficient Solution of the First Passage Problem by Path Integration for Normal and Poissonian White Noise
,”
Probab. Eng. Mech.
,
41
, pp.
121
128
.
14.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2013
, “
Response and First-Passage Statistics of Nonlinear Oscillators Via a Numerical Path Integral Approach
,”
J. Eng. Mech.
,
139
(
9
), pp.
1207
1217
.
15.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2012
, “
An Analytical Wiener Path Integral Technique for Non-Stationary Response Determination of Nonlinear Oscillators
,”
Probab. Eng. Mech.
,
28
, pp.
125
131
.
16.
Di Matteo
,
A.
,
Kougioumtzoglou
,
I. A.
,
Pirrotta
,
A.
,
Spanos
,
P. D.
, and
Di Paola
,
M.
,
2014
, “
Stochastic Response Determination of Nonlinear Oscillators With Fractional Derivatives Elements Via the Wiener Path Integral
,”
Probab. Eng. Mech.
,
38
, pp.
127
135
.
17.
Kougioumtzoglou
,
I. A.
,
Di Matteo
,
A.
,
Spanos
,
P. D.
,
Pirrotta
,
A.
, and
Di Paola
,
M.
,
2015
, “
An Efficient Wiener Path Integral Technique Formulation for Stochastic Response Determination of Nonlinear MDOF Systems
,”
ASME J. Appl. Mech.
,
82
(
10
), p.
101005
.
18.
Samorodnitsky, G.
, and
Taqqu, S. M.
, 2000,
Stable Non-Gaussian Random Processes: Stochastic Models With Infinite Variance
, Chapman and Hall/CRC Press, Boca Raton, FL.
19.
Chandrasekhar
,
S.
,
1943
, “
Stochastic Problems in Physics and Astronomy
,”
Rev. Mod. Phys.
,
15
(
1
), pp.
1
89
.
20.
Mandelbrot
,
B.
,
1960
, “
The Pareto–Lévy Law and Distribution of Income
,”
Int. Econ. Rev.
,
1
(
2
), pp.
79
106
.
21.
Stedinger
,
J.
,
1983
, “
Design Events With Specific Flood Risk
,”
Water Resour. Res.
,
19
(
2
), pp.
511
522
.
22.
Grigoriu
,
M.
,
1986
, “
Structural Response to Uncertain Seismic Excitations
,”
J. Struct. Eng.
,
112
(
6
), pp.
1355
1365
.
23.
Frendal
,
M.
, and
Rychlick
,
I.
,
1992
, “
Rainfall Analysis. Markov Method
,” Department of Mathematical Statistics, University of Lund, Sweden, Technical Report No. 6.
24.
Grigoriu
,
M.
,
1995
, “
Linear Systems Subjected to Non-Gaussian α-Stable Processes
,”
Probab. Eng. Mech.
,
10
(
1
), pp.
23
34
.
25.
Di Paola
,
M.
, and
Failla
,
G.
,
2005
, “
Stochastic Response of Linear and Non-Linear Systems to α-Stable Lévy White Noises
,”
Probab. Eng. Mech.
,
20
(
2
), pp.
128
135
.
26.
Di Paola
,
M.
,
Pirrotta
,
A.
, and
Zingales
,
M.
,
2007
, “
Itô Calculus Extended to Systems Driven by α-Stable Lévy White Noises (A Novel Clip on the Tails of Lévy Motion)
,”
Int. J. Nonlinear Mech.
,
42
(8), pp. 1046–1054.
27.
Grigoriu
,
M.
,
2000
, “
Equivalent Linearization for Systems Driven by Lévy White Noise
,”
Probab. Eng. Mech.
,
15
(
2
), pp.
185
190
.
28.
Alotta
,
G.
, and
Di Paola
,
M.
,
2015
, “
Probabilistic Characterization of Nonlinear Systems Under α-Stable Via Complex Fractional Moments
,”
Physica A
,
420
, pp.
265
276
.
29.
Chechkin
,
A.
,
Gonchar
,
V.
,
Klafter
,
J.
,
Metzler
,
R.
, and
Tarantov
,
L.
,
2002
, “
Stationary State of Non-Linear Oscillator Driven by Lévy Noise
,”
Chem. Phys.
,
284
(1–2), pp.
233
251
.
30.
Naess
,
A.
, and
Skaug
,
C.
,
1999
, “
Extension of the Numerical Path Integration Method to Filtered α-Stable Levy Noise
,”
Computational Stochastic Mechanics
, P.D. Spanos, ed., A.A. Balkema Publishers, Rotterdam, The Netherlands, pp. 391–396.
31.
Naess
,
A.
, and
Skaug
,
C.
,
2001
, “
Path Integration Methods for Calculating Response Statistics of Nonlinear Oscillators Driven by α-Stable Lévy Noise
,”
IUTAM
Symposium on Nonlinear and Stochastic Structural Dynamics, Chennai, India, Jan. 4–8, pp.
159
169
.
32.
Pirrotta
,
A.
,
2005
, “
Non-Linear Systems Under Parametric White Noise Input: Digital Simulation and Response
,”
Int. J. Nonlinear Mech.
,
40
(
8
), pp.
1088
1101
.
33.
Metzler
,
R.
, and
Klafter
,
J.
,
2000
, “
The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach
,”
Phys. Rep.
,
339
(
1
), pp.
1
77
.
34.
Di Paola
,
M.
, and
Pinnola
,
F. P.
,
2011
, “
Riesz Fractional Integrals and Complex Fractional Moments for the Probabilistic Characterization of Random Variables
,”
Probab. Eng. Mech.
,
29
, pp.
149
156
.
You do not currently have access to this content.