Recently, a displacement-based nonlocal bar model has been developed. The model is based on the assumption that nonlocal forces can be modeled as viscoelastic (VE) long-range interactions mutually exerted by nonadjacent bar segments due to their relative motion; the classical local stress resultants are also present in the model. A finite element (FE) formulation with closed-form expressions of the elastic and viscoelastic matrices has also been obtained. Specifically, Caputo's fractional derivative has been used in order to model viscoelastic long-range interaction. The static and quasi-static response has been already investigated. This work investigates the stochastic response of the nonlocal fractional viscoelastic bar introduced in previous papers, discretized with the finite element method (FEM), forced by a Gaussian white noise. Since the bar is forced by a Gaussian white noise, dynamical effects cannot be neglected. The system of coupled fractional differential equations ruling the bar motion can be decoupled only by means of the fractional order state variable expansion. It is shown that following this approach Monte Carlo simulation can be performed very efficiently. For simplicity, here the work is limited to the axial response, but can be easily extended to transverse motion.

References

References
1.
Lakes
,
R. S.
,
1991
, “
Experimental Micro Mechanics Methods for Conventional and Negative Poisson's Ratio Cellular Solids as Cosserat Continua
,”
ASME J. Eng. Mater. Technol.
,
113
(
1
), pp.
148
155
.
2.
Aifantis
,
E. C.
,
1994
, “
Gradient Effects at Macro, Micro, and Nano Scales
,”
J. Mech. Behav. Mater.
,
5
(
3
), pp.
355
375
.
3.
Qian
,
D.
,
Wagner
,
G. J.
,
Liu
,
W. K.
,
Yu
,
M.-F.
, and
Ruoff
,
R. S.
,
2002
, “
Mechanics of Carbon Nanotubes
,”
ASME Appl. Mech. Rev.
,
55
(
6
), pp.
495
533
.
4.
Arash
,
B.
, and
Wang
,
Q.
,
2012
, “
A Review on the Application of Nonlocal Elastic Models in Modeling of Carbon Nanotubes and Graphenes
,”
Comput. Mater. Sci.
,
51
(
1
), pp.
303
313
.
5.
Wang
,
L. F.
, and
Hu
,
H. Y.
,
2005
, “
Flexural Wave Propagation in Single-Walled Carbon Nanotube
,”
Phys. Rev. B
,
71
(
19
), pp.
195412
195418
.
6.
Tang
,
P. Y.
,
1983
, “
Interpretation of Bend Strength Increase of Graphite by the Couple Stress Theory
,”
Comput. Struct.
,
16
(
1–4
), pp.
45
49
.
7.
Poole
,
W. J.
,
Ashby
,
M. F.
, and
Fleck
,
N. A.
,
1996
, “
Micro-Hardness of Annealed and Work-Hardened Copper Polycrystals
,”
Scr. Mater.
,
34
(
4
), pp.
559
564
.
8.
Lam
,
D. C. C.
,
Yang
,
F.
,
Chong
,
A. C. M.
,
Wang
,
J.
, and
Tong
,
P.
,
2003
, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Solids
,
51
(
8
), pp.
1477
1508
.
9.
McFarland
,
A. W.
, and
Colton
,
J. S.
,
2005
, “
Role of Material Microstructure in Plate Stiffness With Relevance to Microcantilever Sensors
,”
J. Micromech. Microeng.
,
15
(
5
), pp.
1060
1067
.
10.
Russell
,
D. L.
,
1992
, “
On Mathematical Models for the Elastic Beam With Frequency-Proportional Damping
,”
Control and Estimation in Distributed Parameter Systems
,
H. T.
Banks
, ed.,
SIAM
,
Philadelphia, PA
, pp.
125
169
.
11.
Banks
,
H. T.
, and
Inman
,
D. J.
,
1991
, “
On Damping Mechanism in Beams
,”
ASME J. Appl. Mech.
,
58
(
3
), pp.
716
723
.
12.
Lei
,
Y.
,
Friswell
,
M. I.
, and
Adhikari
,
S.
,
2006
, “
A Galerkin Method for Distributed Systems With Non-Local Damping
,”
Int. J. Solids Struct.
,
43
(
11–12
), pp.
3381
3400
.
13.
Friswell
,
M. I.
,
Adhikari
,
S.
, and
Lei
,
Y.
,
2007
, “
Non-Local Finite Element Analysis of Damped Beams
,”
Int. J. Solids Struct.
,
44
(
22–23
), pp.
7564
7576
.
14.
Eringen
,
A. C.
,
1972
, “
Linear Theory of Non-Local Elasticity and Dispersion of Plane Waves
,”
Int. J. Eng. Sci.
,
10
(
5
), pp.
425
435
.
15.
Eringen
,
A. C.
,
1983
, “
On Differential Equations of Non-Local Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
(
9
), pp.
4703
4710
.
16.
Lu
,
P.
,
Lee
,
H. P.
,
Lu
,
C.
, and
Zhang
,
P. Q.
,
2007
, “
Application of Nonlocal Beam Models for Carbon Nanotubes
,”
Int. J. Solids Struct.
,
44
(
16
), pp.
5289
5300
.
17.
Pradhan
,
S. C.
, and
Phadikar
,
J. K.
,
2009
, “
Nonlocal Elasticity Theory for Vibration of Nanoplates
,”
J. Sound Vib.
,
325
(
1–2
), pp.
206
223
.
18.
Park
,
S. K.
, and
Gao
,
X. L.
,
2006
, “
Bernoulli-Euler Beam Model Based on a Modified Couple Stress Theory
,”
J. Micromech. Microeng.
,
16
(
11
), pp.
2355
2359
.
19.
Kong
,
S.
,
Zhou
,
S.
,
Nie
,
Z.
, and
Wang
,
K.
,
2008
, “
The Size-Dependent Natural Frequency of Bernoulli-Euler Micro-Beams
,”
Int. J. Eng. Sci.
,
46
(
5
), pp.
427
437
.
20.
Ma
,
H. M.
,
Gao
,
X.-L.
, and
Reddy
,
J. N.
,
2008
, “
A Microstructure Dependent Timoshenko Beam Model Based on a Modified Couple Stress Theory
,”
J. Mech. Phys. Solids
,
56
(
12
), pp.
3379
3391
.
21.
Challamel
,
N.
, and
Wang
,
C. M.
,
2008
, “
The Small Length Scale Effect for a Non-Local Canti-Lever Beam: A Paradox Solved
,”
Nanotechnology
,
19
(
34
), p.
345703
.
22.
Zhang
,
Y. Y.
,
Wang
,
C. M.
, and
Challamel
,
N.
,
2010
, “
Bending, Buckling, and Vibration of Micro/Nanobeams by Hybrid Nonlocal Beam Model
,”
ASCE J. Eng. Mech.
,
136
(5), pp.
562
574
.
23.
Payton
,
D.
,
Picco
,
L.
,
Miles
,
M. J.
,
Homer
,
M. E.
, and
Champneys
,
A. R.
,
2012
, “
Modelling Oscillatory Flexure Modes of an Atomic Force Microscope Cantilever in Contact Mode Whilst Imaging at High Speed
,”
Nanotechnology
,
23
(
26
), p.
265702
.
24.
Murmu
,
T.
, and
Adhikari
,
S.
,
2012
, “
Nonlocal Frequency Analysis of Nanoscale Biosensors
,”
Sens. Actuators, A
,
173
(
1
), pp.
41
48
.
25.
Chen
,
C.
,
Ma
,
M.
,
Liu
,
J.
,
Zheng
,
Q.
, and
Xu
,
Z.
,
2011
, “
Viscous Damping of Nanobeam Resonators: Humidity, Thermal Noise, and a Paddling Effect
,”
J. Appl. Phys.
,
110
(
3
), p.
034320
.
26.
Lee
,
J.
, and
Lin
,
C.
,
2010
, “
The Magnetic Viscous Damping Effect on the Natural Frequency of a Beam Plate Subject to an In-Plane Magnetic Field
,”
ASME J. Appl. Mech.
,
77
(
1
), p.
011014
.
27.
Di Paola
,
M.
,
Failla
,
G.
, and
Zingales
,
M.
,
2013
, “
Non-Local Stiffness and Damping Models for Shear-Deformable Beams
,”
Eur. J. Mech., A: Solids
,
40
, pp.
69
83
.
28.
Di Paola
,
M.
,
Failla
,
G.
, and
Zingales
,
M.
,
2014
, “
Mechanically Based Nonlocal Euler-Bernoulli Beam Model
,”
J. Micromech. Microeng.
,
4
(1), p. A4013002.
29.
Failla
,
G.
,
Sofi
,
A.
, and
Zingales
,
M.
,
2015
, “
A New Displacement-Based Framework for Non-Local Timoshenko Beams
,”
Meccanica
,
50
(
8
), pp.
2103
2122
.
30.
Alotta
,
G.
,
Failla
,
G.
, and
Zingales
,
M.
,
2014
, “
Finite Element Method for a Nonlocal Timoshenko Beam Model
,”
Finite Elem. Anal. Des.
,
89
, pp.
77
92
.
31.
Fuchs
,
M. B.
,
1991
, “
Unimodal Beam Elements
,”
Int. J. Solids Struct.
,
27
(
5
), pp.
533
545
.
32.
Fuchs
,
M. B.
,
1997
, “
Unimodal Formulation of the Analysis and Design Problems for Framed Structures
,”
Comput. Struct.
,
63
(
4
), pp.
739
747
.
33.
Phadikar
,
J. K.
, and
Pradhan
,
S. C.
,
2010
, “
Variational Formulation and Finite Element Analysis for Nonlocal Elastic Nanobeams and Nanoplate
,”
Comput. Mater. Sci.
,
49
(
3
), pp.
492
499
.
34.
Pradhan
,
S. C.
,
2012
, “
Nonlocal Finite Element Analysis and Small Scale Effects of CNTs With Timoshenko Beam Theory
,”
Finite Elem. Anal. Des.
,
50
, pp.
8
20
.
35.
Alotta
,
G.
,
Failla
,
G.
, and
Zingales
,
M.
,
2015
, “
Finite-Element Formulation of a Nonlocal Hereditary Fractional-Order Timoshenko Beam
,”
ASCE J. Eng. Mech.
,
143
(
5
), p. D4015001.
36.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications
,
Academic Press
,
New York
.
37.
Mainardi
,
F.
,
2010
,
Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
,
World Scientific
,
Singapore
.
38.
Alotta
,
G.
,
Di Paola
,
M.
, and
Pirrotta
,
A.
,
2014
, “
Fractional Tajimi–Kanai Model for Simulating Earthquake Ground Motion
,”
Bull. Earthquake Eng.
,
12
(
6
), pp.
2495
2506
.
39.
Di Paola
,
M.
,
Fiore
,
V.
,
Pinnola
,
F. P.
, and
Valenza
,
A.
,
2014
, “
On the Influence of the Initial Ramp for a Correct Definition of the Parameters of Fractional Viscoelastic Materials
,”
Mech. Mater.
,
69
(
1
), pp.
63
70
.
40.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.
41.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1986
, “
On the Fractional Calculus Model of Viscoelastic Behavior
,”
J. Rheol.
,
30
(
1
), pp.
133
155
.
42.
Failla
,
G.
, and
Pirrotta
,
A.
,
2012
, “
On the Stochastic Response of a Fractionally-Damped Duffing Oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
12
), pp.
5131
5142
.
43.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1985
, “
Fractional Calculus in the Transient Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
23
(
6
), pp.
918
925
.
44.
Di Paola
,
M.
,
Pinnola
,
F. P.
, and
Spanos
,
P. D.
,
2014
, “
Analysis of Multi-Degree-of-Freedom Systems With Fractional Derivative Elements of Rational Order
,” International Conference on Fractional Differentiation and Its Applications (
ICFDA
), Catania, Italy, June 23–25, pp. 1–6.
45.
Di Paola
,
M.
,
Failla
,
G.
, and
Zingales
,
M.
,
2010
, “
The Mechanically Based Approach to 3D Non-Local Linear Elasticity Theory: Long-Range Central Interactions
,”
Int. J. Solids Struct.
,
47
(
18–19
), pp.
2347
2358
.
46.
Altan
,
B. S.
,
1989
, “
Uniqueness of the Initial-Value Problems in Non-Local Elastic Solids
,”
Int. J. Solids Struct.
,
25
(
11
), pp.
1271
1278
.
47.
Polizzotto
,
C.
,
2001
, “
Non Local Elasticity and Related Variational Principles
,”
Int. J. Solids Struct.
,
38
(
42–43
), pp.
7359
7380
.
48.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integral and Derivatives: Theory and Applications
,
Gordon and Breach Science Publishers
, Philadelphia, PA.
49.
Di Paola
,
M.
,
Failla
,
G.
, and
Zingales
,
M.
,
2009
, “
Physically-Based Approach to the Mechanics of Strong Non-Local Linear Elasticity Theory
,”
J. Elasticity
,
97
(
2
), pp.
103
130
.
50.
Reddy
,
J. N.
,
1999
, “
On the Dynamic Behaviour of the Timoshenko Beam Finite Elements
,”
Sādhanā
,
24
(
3
), pp.
175
198
.
51.
Pinnola
,
F. P.
,
2016
, “
Statistical Correlation of Fractional Oscillator Response by Complex Spectral Moments and State Variable Expansion
,”
Commun. Nonlinear Sci. Numer. Simul.
,
39
, pp.
343
359
.
52.
Shinozuka
,
M.
, and
Deodatis
,
G.
,
1988
, “
Stochastic Process Models for Earthquake Ground Motion
,”
Probab. Eng. Mech.
,
3
(
3
), pp.
114
123
.
You do not currently have access to this content.