The paper deals with the stochastic dynamics of a vibroimpact single-degree-of-freedom system under a Gaussian white noise. The system is assumed to have a hard type impact against a one-sided motionless barrier, located at the system's equilibrium. The system is endowed with a fractional derivative element. An analytical expression for the system's mean squared response amplitude is presented and compared with the results of numerical simulations.

References

References
1.
Ibrahim
,
R. A.
,
2009
,
Vibro-Impact Dynamics
,
Springer
, Berlin.
2.
Ibrahim
,
R. A.
,
Babitsky
,
V. I.
, and
Okuma
,
M.
,
2009
,
Vibro-Impact Dynamics of Ocean Systems and Related Problems
,
Springer
, Berlin.
3.
Dimentberg
,
M.
,
Yurchenko
,
D.
, and
van Ewijk
,
O.
,
1998
, “
Subharmonic Response of a Quasi-Isochronous Vibroimpact System to a Randomly Disordered Periodic Excitation
,”
Nonlinear Dyn.
,
17
(
2
), pp.
173
186
.
4.
Jacquelin
,
E.
,
Adhikari
,
S.
, and
Friswell
,
M. I.
,
2011
, “
A Piezoelectric Device for Impact Energy Harvesting
,”
Smart Mater. Struct.
,
20
(
10
), p. 105008.
5.
Zhang
,
Y.
,
Cai
,
C. S.
, and
Zhang
,
W.
,
2014
, “
Experimental Study of a Multi-Impact Energy Harvester Under Low Frequency Excitations
,”
Smart Mater. Struct.
,
23
(
5
), p. 055002.
6.
Masri
,
S. F.
,
1967
, “
Effectiveness of Two Particle Impact Dampers
,”
J. Acoust. Soc. Am.
,
41
(
6
), pp.
1553
1554
.
7.
Lu
,
Z.
,
Masri
,
S. F.
, and
Lu
,
X.
,
2011
, “
Studies of the Performance of Particle Dampers Attached to a Two-Degrees-of-Freedom System Under Random Excitation
,”
J. Vib. Control
,
17
(
10
), pp.
1454
1471
.
8.
Pavlovskaia
,
E.
,
Hendry
,
D. C.
, and
Wiercigroch
,
M.
,
2015
, “
Modelling of High Frequency Vibro-Impact Drilling
,”
Int. J. Mech. Sci.
,
91
, pp.
110
119
.
9.
Dimentberg
,
M.
, and
Iourtchenko
,
D. V.
,
2004
, “
Random Vibrations With Impacts: A Review
,”
Nonlinear Dyn.
,
36
(2), pp.
229
254
.
10.
Dimentberg
,
M.
, and
Iourtchenko
,
D. V.
,
1999
, “
Towards Incorporating Impact Losses Into Random Vibration Analyses: A Model Problem
,”
Probab. Eng. Mech.
,
14
(
4
), pp.
323
328
.
11.
Iourtchenko
,
D. V.
, and
Song
,
L. L.
,
2006
, “
Numerical Investigation of a Response Probability Density Function of Stochastic Vibroimpact Systems With Inelastic Impacts
,”
Int. J. Non-Linear Mech.
,
41
(
3
), pp.
447
455
.
12.
Gemant
,
A.
, 1936, “
A Method of Analyzing Experimental Results Obtained From Elasto-Viscous Bodies
,”
J. Appl. Phys.
,
7
, pp.
311
317
.
13.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1979
, “
A Generalized Derivative Model for an Elastomer Damper
,”
Shock Vib. Bull.
,
49
, pp.
135
143
.
14.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.
15.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
21
(5), pp.
741
774
.
16.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1986
, “
On the Fractional Calculus Model of Viscoelastic Behavior
,”
J. Rheol.
,
30
(
1
), pp.
133
155
.
17.
Nutting
,
P. G.
,
1921
, “
A New General Law Deformation
,”
J. Franklin Inst.
,
191
(5), pp.
678
685
.
18.
Schmidt
,
A.
, and
Gaul
,
L.
,
2002
, “
Finite Element Formulation of Viscoelastic Constitutive Equations Using Fractional Time Derivatives
,”
Nonlinear Dyn.
,
29
(
1
), pp.
37
55
.
19.
Gonsovskii
,
V. L.
, and
Rossikhin
,
Y. A.
,
1973
, “
Stress Waves in a Viscoelastic Medium With a Singular Hereditary Kernel
,”
J. Appl. Mech. Tech. Phys.
,
14
(
4
), pp.
595
597
.
20.
Schiessel
,
H.
, and
Blumen
,
A.
,
1993
, “
Hierarchical Analogues to Fractional Relaxation Equations
,”
J. Phys. A
,
26
(
19
), pp.
5057
5069
.
21.
Stiassnie
,
M.
,
1979
, “
On the Application of Fractional Calculus for the Formulation of Viscoelastic Models
,”
Appl. Math. Modell.
,
3
(
4
), pp.
300
302
.
22.
Mainardi
,
F.
, and
Gorenflo
,
R.
,
2007
, “
Time-Fractional Derivatives in Relaxation Processes: A Tutorial Survey
,”
Fractional Calculus Appl. Anal.
,
10
(
3
), pp.
269
308
.
23.
Samko
,
G. S.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives
,
Gordon and Breach Science Publishers
,
Amsterdam, The Netherlands
.
24.
Podlubny
,
I.
,
1999
,
On Solving Fractional Differential Equations by Mathematics, Science and Engineering
,
Academic Press
, San Diego, CA.
25.
Hilfer
,
R.
,
2000
,
Applications of Fractional Calculus in Physics
,
World Scientific
,
Singapore
.
26.
Di Paola
,
M.
,
Pirrotta
,
A.
, and
Valenza
,
A.
,
2011
, “
Visco-Elastic Behavior Through Fractional Calculus: An Easier Method for Best Fitting Experimental Results
,”
Mech. Mater.
,
43
(
12
), pp.
799
806
.
27.
Pirrotta
,
A.
,
Cutrona
,
S.
,
Di Lorenzo
,
S.
, and
Di Matteo
,
A.
,
2015
, “
Fractional Visco-Elastic Timoshenko Beam Deflection Via Single Equation
,”
Int. J. Numer. Methods Eng.
,
104
(
9
), pp.
869
886
.
28.
Di Lorenzo
,
S.
,
Di Paola
,
M.
,
Pinnola
,
F. P.
, and
Pirrotta
,
A.
,
2014
, “
Stochastic Response of Fractionally Damped Beams
,”
Probab. Eng. Mech.
,
35
, pp.
37
43
.
29.
Di Paola
,
M.
,
Heuer
,
R.
, and
Pirrotta
,
A.
, 2013, “
Fractional Visco-Elastic Euler-Bernoulli Beam
,”
Int. J. Solids Struct.
,
50
(
22–23
), pp.
3505
3510
.
30.
Pirrotta
,
A.
,
Cutrona
,
S.
, and
Di Lorenzo
,
S.
,
2015
, “
Fractional Visco-Elastic Timoshenko Beam From Elastic Euler-Bernoulli Beam
,”
Acta Mech.
,
226
(
1
), pp.
179
189
.
31.
Bucher
,
C.
, and
Pirrotta
,
A.
,
2015
, “
Dynamic Finite Element Analysis of Fractionally Damped Structural Systems in the Time Domain
,”
Acta Mech.
,
226
(
12
), pp.
3977
3990
.
32.
Alotta
,
G.
,
Di Paola
,
M.
, and
Pirrotta
,
A.
,
2014
, “
Fractional Tajimi-Kanai Model for Simulating Earthquake Ground Motion
,”
Bull. Earthquake Eng. (BEEE)
,
12
(
6
), pp.
2495
2506
.
33.
Di Matteo
,
A.
,
Lo Iacono
,
F.
,
Navarra
,
G.
, and
Pirrotta
,
A.
,
2015
, “
Innovative Modeling of Tuned Liquid Column Damper Motion
,”
Commun. Nonlinear Sci. Numer. Simul.
,
23
(
1–3
), pp.
229
244
.
34.
Di Paola
,
M.
,
Failla
,
G.
, and
Pirrotta
,
A.
,
2012
, “
Stationary and Non-Stationary Stochastic Response of Linear Fractional Viscoelastic Systems
,”
Probab. Eng. Mech.
,
28
, pp.
85
90
.
35.
Failla
,
G.
, and
Pirrotta
,
A.
,
2012
, “
On the Stochastic Response of a Fractionally-Damped Duffing Oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
12
), pp.
5131
5142
.
36.
Evangelatos
,
G. I.
, and
Spanos
,
P. D.
,
2011
, “
An Accelerated Newmark Scheme for Integrating the Equation of Motion of Nonlinear Systems Comprising Restoring Elements Governed by Fractional Derivatives
,”
Recent Advances in Mechanics
, Springer, Dordrecht, The Netherlands, pp.
159
177
.
37.
Huang
,
Z. L.
, and
Jin
,
X. L.
,
2009
, “
Response and Stability of a SDOF Strongly Nonlinear Stochastic System With Light Damping Modeled by a Fraction Derivative
,”
J. Sound Vib.
,
319
(
3–5
), pp.
1121
1135
.
38.
Spanos
,
P. D.
, and
Evangelatos
,
G. I.
,
2010
, “
Response of a Non-Linear System With Restoring Forces Governed by Fractional Derivatives-Time Domain Simulation and Statistical Linearization Solution
,”
Soil Dyn. Earthquake Eng.
,
30
(
9
), pp.
811
821
.
You do not currently have access to this content.