In this paper, we yield with a nonlocal elastic rod problem, widely studied in the last decades. The main purpose of the paper is to investigate the effects of the statistic variability of the fractional operator order s on the displacements u of the rod. The rod is supposed to be subjected to external distributed forces, and the displacement field u is obtained by means of numerical procedure. The attention is particularly focused on the parameter s, which influences the response in a nonlinear fashion. The effects of the uncertainty of s on the response at different locations of the rod are investigated by the Monte Carlo simulations. The results obtained highlight the importance of s in the probabilistic feature of the response. In particular, it is found that for a small coefficient of variation of s, the probability density function of the response has a unique well-identifiable mode. On the other hand, for a high coefficient of variation of s, the probability density function of the response decreases monotonically. Finally, the coefficient of variation and, to a small extent, the mean of the response tend to increase as the coefficient of variation of s increases.

References

References
1.
Carpinteri
,
A.
, and
Mainardi
,
F.
,
1997
,
Fractals and Fractional Calculus in Continuum Mechanics
,
Springer-Verlag
,
Wien, Austria
.
2.
Gemant
,
A.
,
1936
, “
A Method of Analyzing Experimental Results Obtained by Elasto-Viscous Bodies
,”
J. Appl. Phys.
,
7
(
8
), pp.
311
317
.
3.
Colinas-Armijo
,
N.
,
Di Paola
,
M.
, and
Pinnola
,
F. P.
,
2016
, “
Fractional Characteristic Times and Dissipated Energy in Fractional Linear Viscoelasticity
,”
Commun. Nonlinear Sci. Numer. Simul.
,
37
, pp.
14
30
.
4.
Mainardi
,
F.
,
2010
,
Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
,
Imperial College Press
,
London
.
5.
Makris
,
N.
, and
Costantinou
,
M. C.
,
1991
, “
Fracional-Derivative Maxwell Model for Viscous Dampers
,”
J. Struct. Eng.
,
117
(
9
), pp.
2708
2724
.
6.
Gusella
,
V.
, and
Terenzi
,
G.
,
1997
, “
Fluid Viscous Device Modelling by Fractional Derivatives
,”
Struct. Eng. Mech.
,
5
(
2
), pp.
177
191
.
7.
Eringen
,
A. C.
,
1992
, “
Vistas of Nonlocal Continuum Physics
,”
Int. J. Eng. Sci.
,
30
(
10
), pp.
1551
1565
.
8.
Bazant
,
Z. P.
,
1991
, “
Why Continuum Damage is Nonlocal: Micromechanics Arguments
,”
J. Eng. Mech.
,
117
(
5
), pp.
1070
1087
.
9.
Bassani
,
J. L.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
,
2001
, “
Plastic Flow in a Composite: A Comparison of Nonlocal Continuum and Discrete Dislocation Predictions
,”
Int. J. Solids Struct.
,
38
(
5
), pp.
833
853
.
10.
Geers
,
M. G. D.
,
de Borst
,
R.
, and
Peijs
,
T.
,
1999
, “
Mixed Numerical-Experimental Identification of Non-Local Characteristics of Random-Fibre-Reinforced Composites
,”
Compos. Sci. Technol.
,
59
(
10
), pp.
1569
1578
.
11.
Lazopoulos
,
K. A.
,
2006
, “
Non-Local Continuum Mechanics and Fractional Calculus
,”
Mech. Res. Commun.
,
33
(
6
), pp.
753
757
.
12.
Di Paola
,
M.
,
Pirrotta
,
A.
, and
Zingales
,
M.
,
2010
, “
Mechanically-Based Approach to Non-Local Elasticity: Variational Principles
,”
Int. J. Solids Struct.
,
47
(
5
), pp.
539
548
.
13.
Carpinteri
,
A.
,
Cornetti
,
P.
, and
Sapora
,
A.
,
2011
, “
A Fractional Calculus Approach to Nonlocal Elasticity
,”
Eur. Phys. J. Spec. Top.
,
193
(
1
), pp.
193
204
.
14.
Autuori
,
G.
, and
Pucci
,
P.
,
2013
, “
Elliptic Problems Involving the Fractional Laplacian in ℝN
,”
J. Differ. Equations
,
255
(
8
), pp.
2340
2362
.
15.
Autuori
,
G.
,
Fiscella
,
A.
, and
Pucci
,
P.
,
2015
, “
Stationary Kirchhoff Problems Involving a Fractional Elliptic Operator and a Critical Nonlinearity
,”
Nonlinear Anal.
,
125
, pp.
699
714
.
16.
Autuori
,
G.
,
Cluni
,
F.
,
Gusella
,
V.
, and
Pucci
,
P.
,
2016
, “
Mathematical Models for Nonlocal Elastic Composite Materials
,”
Adv. Nonlinear Anal.
, epub.
17.
Silling
,
S. A.
,
2014
, “
Origin and Effect of Nonlocality in a Composite
,” Sandia Report, Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2013-8140
.
18.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
(North-Holland Mathematics Studies 204),
Elsevier Science B. V.
,
Amsterdam, The Netherlands
.
19.
Katugampola
,
U. N.
,
2014
, “
A New Approach to Generalized Fractional Derivatives
,”
Bull. Math. Anal. Appl.
,
6
(4), pp.
1
15
.
20.
Atanackovic
,
T. M.
, and
Stankovic
,
B.
,
2009
, “
Generalized Wave Equation in Nonlocal Elasticity
,”
Acta Mech.
,
208
(
1
), pp.
1
10
.
21.
Cornetti
,
P.
,
Carpinteri
,
A.
,
Sapora
,
A. G.
,
Di Paola
,
M.
, and
Zingales
,
M.
, 2009, “
An Explicit Mechanical Interpretation of Eringen Non-Local Elasticity by Means of Fractional Calculus
,”
AIMETA
Conference, Ancona, Italy, Sept. 14–17.
22.
Di Paola
,
M.
, and
Zingales
,
M.
,
2008
, “
Long-Range Cohesive Interactions of Nonlocal Continuum Faced by Fractional Calculus
,”
Int. J. Solids Struct.
,
45
(
21
), pp.
5642
5659
.
23.
Sapora
,
A.
,
Cornetti
,
P.
, and
Carpinteri
,
A.
,
2013
, “
Wave Propagation in Nonlocal Elastic Continua Modelled by a Fractional Calculus Approach
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
1
), pp.
63
74
.
24.
Tarasov
,
V. E.
,
2014
, “
Fractional Gradient Elasticity From Spatial Dispersion Law
,”
Condens. Matter Phys.
,
2014
, p.
794097
.
25.
Huang
,
Y.
, and
Oberman
,
A.
,
2014
, “
Numerical Methods for the Fractional Laplacian: A Finite Difference-Quadrature Approach
,”
SIAM J. Numer. Anal.
,
52
(
6
), pp.
3056
3084
.
26.
Moré
,
J. J.
,
Garbow
,
B. S.
, and
Hillstrom
,
K. E.
,
1980
, “
User Guide for MINPACK-1
,” Argonne National Laboratory, Argonne, IL, Technical Report No. ANL-80-74.
27.
Lin
,
Y. K.
,
1967
,
Probabilistic Theory of Structural Dynamics
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.