In the last decades, the research community has shown an increasing interest in the engineering applications of fractional calculus, which allows to accurately characterize the static and dynamic behavior of many complex mechanical systems, e.g., the nonlocal or nonviscous constitutive law. In particular, fractional calculus has gained considerable importance in the random vibration analysis of engineering structures provided with viscoelastic damping. In this case, the evaluation of the dynamic response in the frequency domain presents significant advantages, once a probabilistic characterization of the input is provided. On the other hand, closed-form expressions for the response statistics of dynamical fractional systems are not available even for the simplest cases. Taking advantage of the residue theorem, in this paper the exact expressions of the spectral moments of integer and complex orders (i.e., fractional spectral moments of linear fractional oscillators driven by acceleration time histories obtained as samples of stationary Gaussian white noise processes are determined.

References

References
1.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010801
.
2.
Shimizu
,
N.
, and
Zhang
,
W.
,
1999
, “
Fractional Calculus Approach to Dynamic Problems of Viscoelastic Materials
,”
JSME Int. J., Ser. C
,
42
(
4
), pp.
825
837
.
3.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.
4.
Koeller
,
R. C.
,
1984
, “
Applications of Fractional Calculus to the Theory of Viscoelasticity
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
299
307
.
5.
Koh
,
C. G.
, and
Kelly
,
J. M.
,
1990
, “
Application of Fractional Derivatives to Seismic Analysis of Base-Isolated Models
,”
Earthquake Eng. Struct. Dyn.
,
19
(
2
), pp.
229
241
.
6.
Makris
,
N.
, and
Constantinou
,
M. C.
,
1991
, “
Fractional Derivative Maxwell Model for Viscous Dampers
,”
J. Struct. Eng.
,
117
(
9
), pp.
2708
2724
.
7.
Lewandowski
,
R.
, and
Chorazyczewski
,
B.
,
2010
, “
Identification of the Parameters of the Kelvin–Voigt and the Maxwell Fractional Models, Used to Modelling of Viscoelastic Dampers
,”
Comput. Struct.
,
88
, pp.
1
17
.
8.
Di Paola
,
M.
, and
Zingales
,
M.
,
2012
, “
Exact Mechanical Models of Fractional Hereditary Materials
,”
J. Rheol.
,
56
(5), pp.
983
1004
.
9.
Di Paola
,
M.
,
Pirrotta
,
A.
, and
Valenza
,
A.
,
2011
, “
Viscoelastic Behaviour Through Fractional Calculus: An Easier Method for Best Fitting Experimental Results
,”
Mech. Mater.
,
43
(
12
), pp.
799
806
.
10.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
1997
, “
Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids
,”
ASME Appl. Mech. Rev.
,
50
(
1
), pp.
15
67
.
11.
Rüdinger
,
F.
,
2006
, “
Tuned Mass Damper With Fractional Derivative Damping
,”
Eng. Struct.
,
28
(
13
), pp.
1774
1779
.
12.
Barone
,
G.
,
Lo Iacono
,
F.
, and
Navarra
,
G.
,
2014
, “
Passive Control of Fractional Viscoelastic Structures by Fractional Tuned Mass Dampers
,”
Computational Stochastic Mechanics Conference
(
CSM7
), Santorini, Greece, June 15–18, pp. 97–106.
13.
Barone
,
G.
,
Lo Iacono
,
F.
, and
Navarra
,
G.
,
2014
, “
Dynamic Characterization of Fractional Oscillators for Fractional Tuned Mass Dampers Tuning
,”
International Conference on Fractional Differentiation and Its Applications
(
ICFDA
), Catania, Italy, June 23–25, pp. 1–5.
14.
Barone
,
G.
,
Di Paola
,
M.
,
Lo Iacono
,
F.
, and
Navarra
,
G.
,
2015
, “
Viscoelastic Bearings With Fractional Constitutive Law for Fractional Tuned Mass Dampers
,”
J. Sound Vib.
,
344
, pp.
18
27
.
15.
Barone
,
G.
,
Palmeri
,
A.
, and
Lombardo
,
M.
,
2015
, “
Stochastic Analysis of Fractional Oscillators by Equivalent System Definition
,”
First Conference on Uncertainty Quantification in Computational Sciences and Engineering
(
UNCECOMP
), Crete Island, Greece, May 25–27, pp. 319–328.
16.
Vanmarcke
,
E. H.
,
1972
, “
Properties of Spectral Moments With Applications to Random Vibration
,”
ASCE J. Eng. Mech. Div.
,
98
(
2
), pp.
425
446
.
17.
Michaelov
,
G.
,
Sarkani
,
S.
, and
Luted
,
L. D.
,
1999
, “
Spectral Characteristic of Nonstationary Random Processes—A Critical Review
,”
Struct. Saf.
,
21
(
3
), pp.
223
244
.
18.
Di Paola
,
M.
, and
Petrucci
,
G.
,
1990
, “
Spectral Moments and Pre-Envelope Covariances of Non Separable Processes
,”
ASME J. Appl. Mech.
,
57
(1), pp.
218
224
.
19.
Muscolino
,
G.
,
1991
, “
Nonstationary Pre-Envelope Covariances of Nonclassically Damped Systems
,”
J. Sound Vib.
,
149
(
1
), pp.
107
123
.
20.
Spanos
,
P. D.
, and
Miller
,
S. M.
,
1994
, “
Hilbert Transform Generalization of a Classical Random Vibration Integral
,”
ASME J. Appl. Mech.
,
61
(
3
), pp.
575
581
.
21.
Di Paola
,
M.
,
2015
, “
Complex Fractional Moments and Their Use in Earthquake Engineering
,”
Encyclopedia of Earthquake Engineering
,
Springer
,
Berlin
, pp.
446
461
.
22.
Cottone
,
G.
, and
Di Paola
,
M.
,
2010
, “
A New Representation of Power Spectral Density and Correlation Function by Means of Fractional Spectral Moments
,”
Probab. Eng. Mech.
,
25
(
3
), pp.
348
353
.
23.
Cottone
,
G.
,
Di Paola
,
M.
, and
Santoro
,
R.
,
2010
, “
A Novel Exact Representation of Stationary Colored Gaussian Processes (Fractional Differential Approach)
,”
J. Phys. A: Math. Theor.
,
43
(
8
), p.
085002
.
24.
Cottone
,
G.
, and
Di Paola
,
M.
,
2011
, “
Fractional Spectral Moments for Digital Simulation of Multivariate Wind Velocity Fields
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
6
), pp.
741
747
.
25.
Mitrinović
,
D. S.
, and
Keckić
,
J. D.
,
1984
,
The Cauchy Method of Residues: Theory and Applications
,
Springer
,
Dordrecht, The Netherlands
.
26.
Ablowitx
,
M. J.
, and
Fokas
,
A. S.
,
2003
,
Complex Variables: Introduction and Applications
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.