Abstract

In risk analysis of rare events, there is a need to adopt data from different sources with varying levels of detail (e.g., local, regional, categorical data). Therefore, it is very important to identify, understand, and incorporate the uncertainty that accompanies the data. Hierarchical Bayesian analysis (HBA) addresses uncertainty among the aggregated data for each event through generating an informative prior distribution for the event's parameter of interest. The Bayesian network (BN) approach is used to model accident causation. BN enables both inductive and abductive reasoning, which helps to better understand and minimize model uncertainty. In this work, the methodology is proposed to integrate BN with HBA to model rare events, considering both data and model uncertainty. HBA considers data uncertainty, while BN uses an adaptive model to better represent and manage model uncertainty. Application of the proposed methodology is demonstrated using three types of offshore accidents. The proposed methodology provides a way to develop a dynamic risk analysis approach to rare events.

References

1.
Khakzad
,
N.
,
Khan
,
F.
, and
Amyotte
,
P.
,
2011
, “
Safety Analysis in Process Facilities: Comparison of Fault Tree and Bayesian Network Approaches
,”
Reliab. Eng. Syst. Saf.
,
96
(
8
), pp.
925
932
.
2.
Schöbi
,
R.
,
Sudret
,
B.
, and
Marelli
,
S.
,
2016
, “
Rare Event Estimation Using Polynomial-Chaos Kriging
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A
, (published ahead of print March 28, 2016).
3.
Chakraborty
,
S.
, and
Chowdhury
,
R.
,
2017
, “
Hybrid Framework for the Estimation of Rare Failure Event Probability
,”
J. Eng. Mech.
, (published ahead of print).
4.
Li
,
J.
,
Li
,
J.
, and
Xiu
,
D.
,
2011
, “
An Efficient Surrogate-Based Method for Computing Rare Failure Probability
,”
J. Comput. Phys.
,
230
(
24
), pp.
8683
8697
.
5.
Hua
,
B.
,
Bie
,
Z.
,
Au
,
S. K.
,
Li
,
W.
, and
Wang
,
X.
,
2015
, “
Extracting Rare Failure Events in Composite System Reliability Evaluation Via Subset Simulation
,”
IEEE Trans. Power Syst.
,
30
(
2
), pp.
753
762
.
6.
Siu
,
N. O.
, and
Kelly
,
D. L.
,
1998
, “
Bayesian Parameter Estimation in Probabilistic Risk Assessment
,”
Reliab. Eng. Syst. Saf.
,
62
(
1–2
), pp.
89
116
.
7.
Kelly
,
D. L.
, and
Smith
,
C. L.
,
2009
, “
Bayesian Inference in Probabilistic Risk Assessment—The Current State of the Art
,”
Reliab. Eng. Syst. Saf.
,
94
(
2
), pp.
628
643
.
8.
Yan
,
Z.
, and
Haimes
,
Y. Y.
,
2010
, “
Cross-Classified Hierarchical Bayesian Models for Risk-Based Analysis of Complex Systems Under Sparse Data
,”
Reliab. Eng. Syst. Saf.
,
95
(
7
), pp.
764
776
.
9.
Kelly
,
D.
, and
Smith
,
C.
,
2011
,
Bayesian Inference for Probabilistic Risk Assessment: A Practitioner's Guidebook
, Springer-Verlag, London.
10.
Khakzad
,
N.
,
Khan
,
F.
, and
Paltrinieri
,
N.
,
2014
, “
On the Application of Near Accident Data to Risk Analysis of Major Accidents
,”
Reliab. Eng. Syst. Saf.
,
126
, pp.
116
125
.
11.
Yang
,
M.
,
Khan
,
F. I.
, and
Lye
,
L.
,
2013
, “
Precursor-Based Hierarchical Bayesian Approach for Rare Event Frequency Estimation: A Case of Oil Spill Accidents
,”
Process Saf. Environ. Prot.
,
91
(
5
), pp.
333
342
.
12.
Yang
,
M.
,
Khan
,
F.
,
Lye
,
L.
, and
Amyotte
,
P.
,
2015
, “
Risk Assessment of Rare Events
,”
Process Saf. Environ. Prot.
,
98
, pp.
102
108
.
13.
Khakzad
,
N.
,
Khakzad
,
S.
, and
Khan
,
F.
,
2014
, “
Probabilistic Risk Assessment of Major Accidents: Application to Offshore Blowouts in the Gulf of Mexico
,”
Nat. Hazards
,
74
(
3
), pp.
1759
1771
.
14.
Apostolakis
,
G.
,
1982
, “
Data Analysis in Risk Assessments
,”
Nucl. Eng. Des.
,
71
(
3
), pp.
375
381
.
15.
Khakzad
,
N.
,
Khan
,
F.
, and
Amyotte
,
P.
,
2012
, “
Dynamic Risk Analysis Using Bow-Tie Approach
,”
Reliab. Eng. Syst. Saf.
,
104
, pp.
36
44
.
16.
Abimbola
,
M.
,
Khan
,
F.
, and
Khakzad
,
N.
,
2014
, “
Dynamic Safety Risk Analysis of Offshore Drilling
,”
J. Loss Prev. Process Ind.
,
30
, pp.
74
85
.
17.
Khakzad
,
N.
,
Khan
,
F.
, and
Amyotte
,
P.
,
2013
, “
Dynamic Safety Analysis of Process Systems by Mapping Bow-Tie Into Bayesian Network
,”
Process Saf. Environ. Prot.
,
91
(
1
), pp.
46
53
.
18.
Bobbio
,
A.
,
Portinale
,
L.
,
Minichino
,
M.
, and
Ciancamerla
,
E.
,
2001
, “
Improving the Analysis of Dependable Systems by Mapping Fault Trees Into Bayesian Networks
,”
Reliab. Eng. Syst. Saf.
,
71
(
3
), pp.
249
260
.
19.
Boudali
,
H.
, and
Dugan
,
J. B.
,
2005
, “
A Discrete-Time Bayesian Network Reliability Modeling and Analysis Framework
,”
Reliab. Eng. Syst. Saf.
,
87
(
3
), pp.
337
349
.
20.
Marquez
,
D.
,
Neil
,
M.
, and
Fenton
,
N.
,
2010
, “
Improved Reliability Modeling Using Bayesian Networks and Dynamic Discretization
,”
Reliab. Eng. Syst. Saf.
,
95
(
4
), pp.
412
425
.
21.
Bearfield
,
G.
, and
Marsh
,
W.
,
2005
, “
Generalising Event Trees Using Bayesian Networks With a Case Study of Train Derailment
,”
International Conference on Computer Safety, Reliability, and Security
, (
SAFECOMP
), Fredrikstad, Norway, Sept. 28–30, pp.
52
66
.
22.
Unnikrishnan
,
G.
, and
Shrihari
,
N. A.
,
2014
, “
Application of Bayesian Methods to Event Trees With Case Studies
,”
Theory Appl.
,
9
, pp. 32–45.http://www.gnedenko-forum.org/Journal/2014/032014/RTA_3_2014-06.pdf
23.
Lunn
,
D.
,
Spiegelhalter
,
D.
,
Thomas
,
A.
, and
Best
,
N.
,
2009
, “
The BUGS Project: Evolution, Critique and Future Directions
,”
Stat. Med.
,
28
(
25
), pp.
3049
3067
.
24.
Robert
,
C.
, and
Ntzoufras
,
I.
,
2012
,
Bayesian Modeling Using WinBUGS
, Wiley, Hoboken, NJ.
25.
Gunawan
,
I.
, 2014, “
Introduction to Reliability Engineering
,”
Fundamentals of Reliability Engineering: Applications in Multistage Interconnection Networks
, Wiley, New York, pp.
1
10
.
26.
Crowl
,
D. A.
, and
Louvar
,
J. F.
,
2001
,
Chemical Process Safety: Fundamentals With Applications
, Prentice Hall, Upper Saddle River, NJ.
27.
Nielsen
,
T. D.
, and
Jensen
,
F. V.
,
2009
,
Bayesian Networks and Decision Graphs
,
Springer Science and Business Media
, New York.
28.
Khakzad
,
N.
,
Khan
,
F.
, and
Amyotte
,
P.
,
2013
, “
Quantitative Risk Analysis of Offshore Drilling Operations: A Bayesian Approach
,”
Saf. Sci.
,
57
, pp.
108
117
.
29.
Torres-Toledano
,
J. G.
, and
Sucar
,
L. E.
,
1998
, “
Bayesian Networks for Reliability Analysis of Complex Systems
,”
Ibero-American Conference on Artificial Intelligence
(
IBERAMIA
), Lisbon, Portugal, Oct. 5–9, pp.
195
206
.
30.
Barbini
,
E.
,
Manzi
,
P.
, and
Barbini
,
P.
,
2013
, “
Bayesian Approach in Medicine and Health Management
,”
Current Topics in Public Health
, InTech, Rijeka, Croatia, pp.
18
35
.
31.
Przytula
,
K. W.
, and
Thompson
,
D.
,
2000
, “
Construction of Bayesian Networks for Diagnostics
,”
IEEE Aerospace Conference
(
AERO
), Big Sky, MT, Mar. 18–25, pp.
193
200
.
32.
Meyer
,
M. A.
, and
Booker
,
J. M.
,
2001
,
Eliciting and Analyzing Expert Judgment: A Practical Guide
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
33.
Liu
,
Z.
,
2011
, “
Analytical and Numerical Analysis of Iceberg Collisions With Ship Structures
,”
Doctoral thesis
, Norwegian University of Science and Technology, Trondheim, Norway.
34.
Li
,
S.
,
Meng
,
Q.
, and
Qu
,
X.
,
2012
, “
An Overview of Maritime Waterway Quantitative Risk Assessment Models
,”
Risk Anal.
,
32
(
3
), pp.
496
512
.
35.
Tangborn
,
A.
,
Kan
,
S.
, and
Tangborn
,
W.
,
1998
, “
Calculation of the Size of the Iceberg Struck by the Oil Tanker Overseas Ohio
,”
14th IAHR Symposium on Ice
, Potsdam, NY, July 27–31, pp.
237
241
.
36.
Antao
,
P.
, and
Soares
,
C. G.
,
2006
, “
Fault-Tree Models of Accident Scenarios of RoPax Vessels
,”
Int. J. Autom. Comput.
,
3
(
2
), pp.
107
116
.
37.
Gramling
,
R.
, and
Freudenburg
,
W. R.
,
1992
, “
The Exxon Valdez Oil Spill in the Context of U.S. Petroleum Politics
,”
Ind. Crisis Q.
,
6
(
3
), pp.
175
196
.
38.
Clumpner, C., and Callahan, B., 2014, “
Optimizing the Value of Near Misses in Wildlife Response Preparedness: The Kulluk Incident
,” International Oil Spill Conference (
IOSC
), Savannah, GA, May 5–8, pp. 2288–2294.
39.
Christou, M., and Konstantinidou, M., 2012, “
Safety of Offshore Oil and Gas Operations: Lessons From Past Accident Analysis
,” Joint Research Center, Ispra, Italy, Report No.
EUR 25646 EN
.
40.
Assael
,
M. J.
, and
Kakosimos
,
K. E.
,
2010
,
Fires, Explosions, and Toxic Gas Dispersions
,
CRC Press
, Boca Raton, FL.
41.
Patè-Cornell, M. E.,
1993
, “
Learning From the Piper Alpha Accident: A Postmortem Analysis of Technical and Organizational Factors
,”
Risk Analysis
,
13
(
2
), pp. 215–232.
You do not currently have access to this content.