We investigate reliability and component importance in spatially distributed infrastructure networks subject to hazards characterized by large-scale spatial dependencies. In particular, we consider a selected IEEE benchmark power transmission system. A generic hazard model is formulated through a random field with continuously scalable spatial autocorrelation to study extrinsic common-cause-failure events such as storms or earthquakes. Network performance is described by a topological model, which accounts for cascading failures due to load redistribution after initial triggering events. Network reliability is then quantified in terms of the decrease in network efficiency and number of lost lines. Selected importance measures are calculated to rank single components according to their influence on the overall system reliability. This enables the identification of network components that have the strongest effect on system reliability. We thereby propose to distinguish component importance related to initial (triggering) failures and component importance related to cascading failures. Numerical investigations are performed for varying correlation lengths of the random field to represent different hazard characteristics. Results indicate that the spatial correlation has a discernible influence on the system reliability and component importance measures, while the component rankings are only mildly affected by the spatial correlation. We also find that the proposed component importance measures provide an efficient basis for planning network improvements.

References

References
1.
Bruch
,
M.
,
Münch
,
V.
,
Aichinger
,
M.
,
Kuhn
,
M.
,
Weymann
,
M.
, and
Gerhard
,
S.
,
2011
, “
Power Blackout Risks—Risk Management Options
,” CRO Forum Emerging Risk Initiative, Amstelveen, The Netherlands.
2.
Hodge
,
N.
,
2012
, “
Emerging Risks on the Horizon—Energy Risk
,” Allianz Global Corporate & Specialty AG, Munich, Germany, pp.
28
33
.
3.
Rausand
,
M.
, and
Høyland
,
A.
,
2004
,
System Reliability Theory Models, Statistical Methods, and Applications
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
4.
Wang
,
W.
,
Loman
,
J.
, and
Vassiliou
,
P.
,
2004
, “
Reliability Importance of Components in a Complex System
,” Reliability and Maintainability Annual Symposium (
RAMS
), Jan. 26–29, pp. 6–11.
5.
Hilber
,
P.
, and
Bertling
,
L.
,
2007
, “
Component Reliability Importance Indices for Electrical Networks
,”
International Conference on Power Engineering (IPEC)
, Singapore, Dec. 3–6, pp. 257–263.
6.
Daemi
,
T.
, and
Ebrahimi
,
A.
,
2012
, “
Evaluation of Components Reliability Importance Measures of Electric Transmission Systems Using the Bayesian Network
,”
Electr. Power Compon. Syst.
,
40
(
12
), pp.
1377
1389
.
7.
Espiritu
,
J. F.
,
Coit
,
D. W.
, and
Prakash
,
U.
,
2007
, “
Component Criticality Importance Measures for the Power Industry
,”
Electr. Power Syst. Res.
,
77
(5–6), pp.
407
420
.
8.
Cadini
,
F.
,
Zio
,
E.
, and
Petrescu
,
C.-A.
,
2009
, “
Using Centrality Measures to Rank the Importance of the Components of a Complex Network Infrastructure
,”
Critical Information Infrastructure Security
, R. Setola and S. Geretshuber, eds.,
Springer
,
Berlin
, pp.
155
167
.
9.
Zio
,
E.
, and
Piccinelli
,
R.
,
2010
, “
Randomized Flow Model and Centrality Measure for Electrical Power Transmission Network Analysis
,”
Reliab. Eng. Syst. Saf.
,
95
(
4
), pp.
379
385
.
10.
Dueñas-Osorio
,
L. A.
,
2005
, “
Interdependent Response of Networked Systems to Natural Hazards and Intentional Disruptions
,”
Ph.D. thesis
, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA.
11.
Ouyang
,
M.
, and
Dueñas-Osorio
,
L.
,
2014
, “
Multi-Dimensional Hurricane Resilience Assessment of Electric Power Systems
,”
Struct. Saf.
,
48
, pp.
15
24
.
12.
Winkler
,
J.
,
L.
Dueñas-Osorio
,
Stein
,
R.
, and
Subramanian
,
D.
,
2010
, “
Performance Assessment of Topologically Diverse Power Systems Subjected to Hurricane Events
,”
Reliab. Eng. Syst. Saf.
,
95
(
4
), pp.
323
336
.
13.
Adachi
,
T.
,
2007
, “
Impact of Cascading Failures on Performance Assessment of Civil Infrastructure Systems
,”
Ph.D. thesis
, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA.
14.
Mosleh
,
A.
,
Fleming
,
K. N.
,
Parry
,
G. W.
,
Paula
,
H. M.
,
Worledge
,
D. H.
, and
Rasmuson
,
D. M.
,
1988
, “
Procedures for Treating Common Cause Failures in Safety and Reliability Studies: Procedural Framework and Examples
,” U.S. Nuclear Regulatory Commission, Newport Beach, CA.
15.
Mosleh
,
A.
,
1991
, “
Common Cause Failures: An Analysis Methodology and Examples
,”
Reliab. Eng. Syst. Saf.
,
34
(
3
), pp.
249
292
.
16.
Vaurio
,
J. K.
,
1998
, “
An Implicit Method for Incorporating Common-Cause Failures in System Analysis
,”
IEEE Trans. Reliab.
,
47
(
2
), pp.
173
180
.
17.
Javanbarg
,
M.
,
Scawthorn
,
C.
,
Kiyono
,
J.
, and
Ono
,
Y.
,
2009
, “
Multi-Hazard Reliability Analysis of Lifeline Networks
,”
Technical Council on Lifeline Earthquake Engineering
(
TCLEE
), American Society of Civil Engineers, pp.
1
8
.
18.
Lim
,
H.-W.
, and
Song
,
J.
,
2012
, “
Efficient Risk Assessment of Lifeline Networks Under Spatially Correlated Ground Motions Using Selective Recursive Decomposition Algorithm
,”
Earthquake Eng. Struct. Dyn.
,
41
(
13
), pp.
1861
1882
.
19.
Neumayer
,
S.
, and
Modiano
,
E.
,
2010
, “
Network Reliability With Geographically Correlated Failures
,” IEEE Conference on Computer Communications (
INFOCOM
), San Diego, CA, Mar. 14–19, pp.
1
9
.
20.
Neumayer
,
S.
,
Zussman
,
G.
,
Cohen
,
R.
, and
Modiano
,
E.
,
2008
, “
Assessing the Impact of Geographically Correlated Network Failures
,”
IEEE Military Communications Conference
(
MILCOM
), San Diego, CA, Nov. 16–19, pp.
1
6
.
21.
Agarwal
,
P. K.
,
Efrat
,
A.
,
Ganjugunte
,
S. K.
,
Hay
,
D.
,
Sankararaman
,
S.
, and
Zussman
,
G.
,
2010
, “
Network Vulnerability to Single, Multiple, and Probabilistic Physical Attacks
,”
Military Communications Conference
(
MILCOM
), San Jose, CA, Oct. 31–Nov. 3, pp.
1824
1829
.
22.
Bernstein
,
A.
,
Bienstock
,
D.
,
Hay
,
D.
,
Uzunoglu
,
M.
, and
Zussman
,
G.
,
2014
, “
Power Grid Vulnerability to Geographically Correlated Failures—Analysis and Control Implications
,”
IEEE Conference on Computer Communications
(
INFOCOM
), Toronto, ON, Canada, Apr. 27–May 2, pp.
2634
2642
.
23.
Andreasson
,
M.
,
Amin
,
S.
, and
Johansson
,
K. H.
,
2011
, “
Correlated Failures of Power Systems: Analysis of the Nordic Grid
,”
Workshop on Foundations of Dependable and Secure Cyber-Physical Systems
(
FDSCPS
), Chicago, IL, April 11.
24.
Rahnamay-Naeini
,
M.
,
Pezoa
,
J. E.
,
Azar
,
G.
,
Ghani
,
N.
, and
Hayat
,
M. M.
,
2011
, “
Modeling Stochastic Correlated Failures and Their Effects on Network Reliability
,”
20th International Conference on Computer Communications and Networks
(
ICCCN
), Maui, HI, July 31–Aug. 4, pp.
1
6
.
25.
Bérenguer
,
C.
,
Dieulle
,
L.
,
Grall
,
A.
, and
Vasseur
,
D.
,
2006
, “
Études de Sensibilité, Facteurs d'importance et Défaillances de Cause Commune
,”
J. Eur. Syst. Automatisés
,
40
(
7
), pp.
763
785
.
26.
Tanguy
,
C.
,
2011
, “
Importance Measures and Common-Cause Failure in Network Reliability
,”
European Safety and Reliability Conference
, (ESREL), Troyes, France, pp. 1052–1060.
27.
Scherb
,
A.
,
Garrè
,
L.
,
Yang
,
Y.
, and
Straub
,
D.
,
2016
, “
Component Importance in Infrastructure Networks Subject to Spatially Distributed Hazards
,” European Safety and Reliability, ESREL 2016, Glasgow, UK.
28.
Latora
,
V.
, and
Marchiori
,
M.
,
2001
, “
Efficient Behavior of Small-World Networks
,”
Phys. Rev. Lett.
,
87
(
19
), p.
198701
.
29.
Wang
,
Z.
,
Scaglione
,
A.
, and
Thomas
,
R. J.
,
2010
, “
Electrical Centrality Measures for Electric Power Grid Vulnerability Analysis
,”
49th IEEE Conference on Decision and Control
(
CDC
), Atlanta, GA, Dec. 15–17, pp.
5792
5797
.
30.
Rosas-Casals
,
M.
,
Valverde
,
S.
, and
SolÉ
,
R. V.
,
2007
, “
Topological Vulnerability of the European Power Grid Under Errors and Attacks
,”
Int. J. Bifurcation Chaos
,
17
(
7
), pp.
2465
2475
.
31.
Arianos
,
S.
,
Bompard
,
E.
,
Carbone
,
A.
, and
Xue
,
F.
,
2009
, “
Power Grid Vulnerability: A Complex Network Approach
,”
Chaos
,
19
(
1
), p.
013119
.
32.
Crucitti
,
P.
,
Latora
,
V.
, and
Marchiori
,
M.
,
2005
, “
Locating Critical Lines in High-Voltage Electrical Power Grids
,”
Fluctuation Noise Lett.
,
5
(
2
), pp.
L201
L208
.
33.
Hines
,
P.
,
Cotilla-Sanchez
,
E.
, and
Blumsack
,
S.
,
2010
, “
Do Topological Models Provide Good Information About Electricity Infrastructure Vulnerability?
,”
Chaos
,
20
(
3
), p.
033122
.
34.
Chassin
,
D. P.
, and
Posse
,
C.
,
2005
, “
Evaluating North American Electric Grid Reliability Using the Barabási–Albert Network Model
,”
Physica A
,
355
(2–4), pp.
667
677
.
35.
Solé
,
R. V.
,
Rosas-Casals
,
M.
,
Corominas-Murtra
,
B.
, and
Valverde
,
S.
,
2008
, “
Robustness of the European Power Grids Under Intentional Attack
,”
Phys. Rev. E
,
77
(
2
), p.
026102
.
36.
Bompard
,
E.
,
Napoli
,
R.
, and
Xue
,
F.
,
2009
, “
Analysis of Structural Vulnerabilities in Power Transmission Grids
,”
Int. J. Crit. Infrastruct. Prot.
,
2
(1–2), pp.
5
12
.
37.
Pagani
,
G. A.
, and
Aiello
,
M.
,
2013
, “
The Power Grid as a Complex Network: A Survey
,”
Physica A
,
392
(
11
), pp.
2688
2700
.
38.
Saccomanno
,
F.
,
2003
,
Electric Power Systems
,
IEEE Press
,
Piscataway, NJ
.
39.
Dwivedi
,
A.
,
Yu
,
X.
, and
Sokolowski
,
P.
,
2009
, “
Identifying Vulnerable Lines in a Power Network Using Complex Network Theory
,”
IEEE International Symposium on Industrial Electronics
(
ISIE
), Seoul, South Korea, July 5–8, pp.
18
23
.
40.
Crucitti
,
P.
,
Latora
,
V.
, and
Marchiori
,
M.
,
2004
, “
Model for Cascading Failures in Complex Networks
,”
Phys. Rev. E
,
69
(
4
), p.
045104
.
41.
Albert
,
R.
,
Albert
,
I.
, and
Nakarado
,
G. L.
,
2004
, “
Structural Vulnerability of the North American Power Grid
,”
Phys. Rev. E
,
69
(
2
), p.
025103
.
42.
Motter
,
A. E.
, and
Lai
,
Y.-C.
,
2002
, “
Cascade-Based Attacks on Complex Networks
,”
Phys. Rev. E
,
66
(
6
), p.
065102
.
43.
Crucitti
,
P.
,
Latora
,
V.
, and
Marchiori
,
M.
,
2004
, “
A Topological Analysis of the Italian Electric Power Grid
,”
Physica A
,
338
(1–2), pp.
92
97
.
44.
Floyd
,
R. W.
,
1962
, “
Algorithm 97: Shortest Path
,”
Commun. ACM
,
5
(
6
), p.
345
.
45.
Vesely
,
W. E.
,
Davis
,
T. C.
,
Denning
,
R. S.
, and
Saltos
,
N.
,
1983
, “
Measures of Risk Importance and Their Applications
,” U.S. Nuclear Regulatory Commission, Report No.
NUREG/CR-3385
.
46.
Latora
,
V.
, and
Marchiori
,
M.
,
2004
, “
How the Science of Complex Networks Can Help Developing Strategies Against Terrorism
,”
Chaos, Solitons Fractals
,
20
(
1
), pp.
69
75
.
47.
A. Der Kiureghian, A., and Liu, P.-L., 1986, “
Structural Reliability Under Incomplete Probability Information
,”
J. Eng. Mech
,
112
(1), pp. 85–104.
48.
Scherb
,
A.
,
Garrè
,
L.
, and
Straub
,
D.
,
2015
, “
Probabilistic Risk Assessment of Infrastructure Networks Subjected to Hurricanes
,”
12th International Conference on Applications of Statistics and Probability in Civil Engineering
,
ICASP12
, Vancouver, BC, Canada, July 12–15.
49.
Christie
,
R.
,
2000
, “
Power Systems Test Case Archive
,” University of Washington, Washington, DC.
50.
North American Rockwell, Edison Electric Institute, and Electric Power Research Institute
,
1970
, “
On-Line Stability Analysis Study RP90-1
,” Electric Power Research Institute, Palo Alto, CA.
51.
Athay
,
T.
,
Podmore
,
R.
, and
Virmani
,
S.
,
1979
, “
A Practical Method for the Direct Analysis of Transient Stability
,”
IEEE Trans. Power Appar. Syst.
,
PAS-98
(
2
), pp.
573
584
.
52.
Whitson
,
J. C.
, and
Ramirez-Marquez
,
J. E.
,
2009
, “
Resiliency as a Component Importance Measure in Network Reliability
,”
Reliab. Eng. Syst. Saf.
,
94
(
10
), pp.
1685
1693
.
You do not currently have access to this content.