Extreme weather forms a major threat to electricity distribution networks and has caused many severe power outages in the past. A reliable electrical grid is something most of us take for granted, but storms, heavy snowfall, and other effects of extreme weather continue to cause disruptions in electricity supply. This paper contributes to ensuring the continuity of electricity supply under adverse weather events. The aim is to describe and to analyze how the continuity of electricity supply can be ensured in the case of extreme weather. Based on the research, the energy sector is highly dependent on the existing locations and structures of the current infrastructure. Aging infrastructure is commonly seen as a main vulnerability factor. The most vulnerable parts of the electricity distribution system to extreme weather conditions are the networks built as overhead lines. However, the resilience of the networks against extreme weather can be increased significantly in all phases of a disaster management cycle. Methods and technological solutions proposed in this paper to alleviate such problems include adjacent forest management and periodic aerial inspections, situational awareness, distributed generation and microgrids, placement of overhead lines, underground cabling, and unmanned air vehicles. However, it must be noticed that the methods and their value for stakeholders are context-dependent. Thus, their applicability and appropriateness may change over time.

References

References
1.
Electric Power Research Institute, 2013, “
Enhancing Distribution Resiliency: Opportunities for Applying Innovative Technologies
,” Electric Power Research Institute, Palo Alto, CA, accessed: Dec. 1,
2016
, http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId =000000000001026889
2.
Campbell
,
R. J.
,
2012
, “
Weather-Related Power Outages and Electric System Resiliency
,” Congressional Research Service Report for Congress, Technical Report No. R42696.
3.
McLinn
,
J.
,
2009
, “
Major Power Outages in the US, and Around the World
,” IEEE Reliability Society 2009 Annual Technology Report, IEEE, Piscataway, NJ.
4.
Energiaviesti, 2012, “
Loppuvuoden sähkökatkoista kärsi 570 000 asiakasta
,” Press Release, Finnish Energy, Helsinki, Finland, accessed: Jan. 1,
2012
, http://www.energiaviesti.fi/uutiset/loppuvuoden-sahkokatkoista-karsi-570-000-asiakasta.html?p739=14 (in Finnish).
5.
YLE, 2015, “
Sähkövika haittaa yhä puhelinliikennettä–yli 50 000 asiakasta häiriön piirissä
,” News Article, YLE, Helsinki, Finland, accessed: Nov. 22, 2015, http://yle.fi/uutiset/3-8473669 (in Finnish).
6.
Lakervi
,
E.
, and
Partanen
,
J.
,
2008
,
Sähkönjakelutekniikka
,
Otatieto
, Helsinki, Finland.
7.
Finnish Energy, 2015, “
Sähkön keskeytystilastot
,” Disruption Statistics, Finnish Energy, Helsinki, Finland, accessed: Jan. 19,
2017
, http://energia.fi/ajankohtaista_ja_materiaalipankki/materiaalipankki/sahkon_keskeytystilastot_2010-2014.html (in Finnish).
8.
Räikkönen
,
M.
,
Mäki
,
K.
,
Murtonen
,
M.
,
Forssén
,
K.
,
Tagg
,
A.
,
Petiet
,
P. J.
,
Nieuwenhuijs
,
A. H.
, and
McCord
,
M.
,
2016
, “
A Holistic Approach for Assessing Impact of Extreme Weather On Critical Infrastructure
,”
Int. J. Saf. Secur. Eng.
,
6
(
2
), pp.
171
180
.
9.
Molarius
,
R.
,
Tuomaala
,
P.
,
Piira
,
K.
,
Räikkönen
,
M.
,
Aubrecht
,
C.
,
Polese
,
M.
,
Zuccaro
,
G.
,
Pilli-Sihvola
,
K.
, and
Rannat
,
K.
,
2015
, “
A Framework for Comprehensive Impact Assessment in the Case of an Extreme Winter Scenario, Considering Integrative Aspects of Systemic Vulnerability and Resilience
,”
Comput. Model. Eng. Sci.
,
109–110
(
2
), pp.
131
158
.
10.
Weisser
,
D.
, and
Garcia
,
R. S.
,
2005
, “
Instantaneous Wind Energy Penetration in Isolated Electricity Grids: Concepts and Review
,”
Renewable Energy
,
30
(
8
), pp.
1299
1308
.
11.
Kaundinya
,
D. P.
,
Balachandra
,
P.
, and
Ravindranath
,
N. H.
,
2009
, “
Grid-Connected Versus Stand-Alone Energy Systems for Decentralized Power—A Review of Literature
,”
Renewable Sustainable Energy Rev.
,
13
(
8
), pp.
2041
2050
.
12.
Denholm
,
P.
,
Ela
,
E.
,
Kirby
,
B.
, and
Milligan
,
M.
,
2010
, “
The Role of Energy Storage With Renewable Electricity Generation
,” National Renewable Energy Laboratory, Golden, CO, Technical Report, NREL/TP-6A2-47187.
13.
Pursiainen
,
C.
,
Rød
,
B.
,
Baker
,
C.
,
Honfi
,
D.
, and
Lange
,
D.
,
2016
, “
Critical Infrastructure Resilience Index
,”
ESREL 2016 European Safety and Reliability
, Glasgow, UK, Sept. 25–29.
14.
Simonovic
,
S. P.
,
2016
, “
From Risk Management to Quantitative Disaster Resilience–A Paradigm Shift
,”
Int. J. Saf. Secur. Eng.
,
6
(
2
), pp.
85
95
.
15.
Ayyub
,
B. M.
,
2015
, “
Practical Resilience Metrics for Planning, Design, and Decision Making
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A
,
1
(
3
).
16.
Cutter
,
S.
,
Barnes
,
L.
,
Berry
,
M.
,
Burton
,
C.
,
Evans
,
E.
, and
Tate
,
E.
,
2008
, “
A Place-Based Model for Understanding Community Resilience to Natural Disasters
,”
Global Environ. Change
,
18
(
4
), pp.
598
606
.
17.
Rose
,
A.
,
Oladosu
,
G.
, and
Liao
,
S.-Y.
,
2007
, “
Business Interruption Impacts of a Terrorist Attack on the Electric Power System of Los Angeles: Customer Resilience to a Total Blackout
,”
Risk Anal.
,
27
(
3
), pp.
513
531
.
18.
Suomen Standardisoimisliitto SFS, 2013, “
Risk Management–Risk Assessment Techniques
,” IEC, Helsinki, Finland, Standard No. SFS-EN 31010.
19.
Saaty
,
T. L.
,
1980
,
The Analytic Hierarchy Process
,
McGraw-Hill
,
New York
.
20.
Millet
,
I.
, and
Wedley
,
W. C.
,
2002
, “
Modelling Risk and Uncertainty With the Analytic Hierarchy Process
,”
J. Multi-Criter. Decis. Anal.
,
11
(
2
), pp.
97
107
.
21.
Yurdakul
,
M.
,
2004
, “
AHP as a Strategic Decision-Making Tool to Justify Machine Tool Selection
,”
J. Mater. Process. Technol.
,
146
(
3
), pp.
365
376
.
22.
INTACT Project, 2016, “
INTACT Project (Impact of Extreme Weather on Critical Infrastructure
),” INTACT, The Hague, The Netherlands, accessed: Oct. 3,
2016
, http://www.intact-project.eu/
23.
TAPIO, 2013, “
Keskijännitteisten ilmajohtojen toimintavarmuuden parantaminen
,” Manual, TAPIO, Helsinki, Finland, accessed: Oct. 3,
2016
, http://tapio.fi/wp-content/uploads/2015/06/Osaraporttien_tiivistelma.pdf (in Finnish).
24.
Urban Securipedia, 2012, “
Crisis Management Cycle
,” The Vitruv Consortium, The Hague, The Netherlands, accessed: Oct. 3, 2016, http://securipedia.eu/mediawiki/index.php/crisis_management_cycle
25.
TAPIO, 2013, “
Puuston aiheuttamat riskit sähkön jakelun toimintavarmuudelle ja metsänhoidon mahdollisuudet riskien vähentämiseen
,” Manual, TAPIO, Helsinki, Finland, accessed: Oct. 3,
2016
, http://tapio.fi/wp-content/uploads/2015/06/Puuston_aiheuttamat_riskit.pdf (in Finnish).
26.
Tervo
,
J.
,
2014
, “
Lentorobotit sähköverkon tarkastuksissa
,” Finnish Energy, Helsinki, Finland, (in Finnish).
27.
Finlex, 2013, “
Sähkömarkkinalaki
,” Legislative Information, Finlex, Helsinki, Finland, accessed: Oct. 3,
2016
, http://www.finlex.fi/fi/laki/alkup/2013/20130588 (in Finnish).
28.
Ministry of Defense of Finland, 2010, “
Valtioneuvoston periaatepäätös: Yhteiskunnan turvallisuusstrategia
,” Decision in Principle, Council of State of Finland, Helsinki, Finland, accessed: Oct. 3,
2016
, http://www.defmin.fi/files/1696/Yhteiskunnan_turvallisuusstrategia_2010.pdf (in Finnish).
29.
Chiradeja
,
P.
,
2005
, “
Benefit of Distributed Generation: A Line Loss Reduction Analysis
,”
Conference: Transmission and Distribution Conference and Exhibition: Asia and Pacific
, IEEE/PES, pp. 1–5.
30.
International Energy Agency, 2016, “
World Energy Outlook 2016
,” International Energy Agency, Paris, France, accessed: Dec. 2, 2016, https://www.iea.org/newsroom/news/2016/november/world-energy-outlook-2016.html
31.
Molarius
,
R.
,
Räikkönen
,
M.
,
Forssén
,
K.
, and
Mäki
,
K.
,
2017
, “
Enhancing the Resilience of Electricity Networks by Multi-Stakeholder Risk Assessment: The Case Study of Adverse Winter Weather in Finland
,”
J. of Extr. Even.
,
3
(2), p. 1650016.
You do not currently have access to this content.