Eco-Industrial parks (EIPs) and industrial symbioses (IS) provide cost-effective and environmental friendly solutions for industries. They bring benefits from industrial plants to industrial parks and neighborhood areas. The exchange of materials, water, and energy is the goal of IS to reduce wastes, by-products, and energy consumption among a cluster of industries. However, although the IS design looks for the best set of flow exchanges among industries at a network level, the lack of access to accurate data challenges the optimal design of a new EIP. IS solutions face uncertainties. Considering the huge cost and long establishment time of IS, the existing studies cannot provide a robust model to investigate effects of uncertainty on the optimal symbioses design. This paper introduces a framework to investigate uncertainties in the EIP design. A multi-objective model is proposed to decide the optimal network of symbiotic exchanges among firms. The model minimizes the costs of multiple product exchanges and environmental impacts of flow exchanges. Moreover, this paper integrates the analysis of uncertainties effects on synergies into the modeling process. The presented models are depicted through optimizing energy synergies of an industrial zone in France. The efficiency of single and multiple objective models is analyzed for the effects of the identified uncertainties. In addition, the presented deterministic and robust models are compared to investigate how the uncertainties affect the performance and configuration of an optimal network. It is believed that the models could improve an EIP's resilience under uncertainties.

References

References
1.
Chertow
,
M.
,
2000
, “
Industrial Symbiosis: Literature and Taxonomy
,”
Annu. Rev. Energy Environ.
,
25
(
1
), pp.
313
337
.
2.
Chertow
,
M.
,
2004
, “
Industrial Symbiosis
,”
Encycl. Energy
,
3
(
19
),
Elsevier, Amsterdam
,
The Netherlands
, pp.
407
415
.
3.
Farel
,
R.
,
Charrière
,
B.
,
Thevenet
,
C.
, and
Yune
,
J. H.
,
2016
, “
Sustainable Manufacturing Through Creation and Governance of Eco-Industrial Parks
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p.
101003
.
4.
Behera
,
S. K.
,
Kim
,
J.-H.
,
Lee
,
S.-Y.
,
Suh
,
S.
, and
Park
,
H.-S.
,
2012
, “
Evolution of ‘Designed’ Industrial Symbiosis Networks in the Ulsan Eco-Industrial Park: ‘Research and Development Into Business' as the Enabling Framework
,”
J. Cleaner Prod.
,
29–30
, pp.
103
112
.
5.
Domenech
,
T.
, and
Davies
,
M.
,
2011
, “
Structure and Morphology of Industrial Symbiosis Networks: The Case of Kalundborg
,”
Procedia-Soc. Behav. Sci.
,
10
, pp.
79
89
.
6.
Van Beers
,
D.
, and
Biswas
,
W. K.
,
2008
, “
A Regional Synergy Approach to Energy Recovery: The Case of the Kwinana Industrial Area, Western Australia
,”
Energy Convers. Manage.
,
49
(
11
), pp.
3051
3062
.
7.
Hui
,
C. W.
, and
Ahmad
,
S.
,
1994
, “
Total Site Heat Integration Using the Utility System
,”
Comput. Chem. Eng.
,
18
(
8
), pp.
729
742
.
8.
Boix
,
M.
,
Montastruc
,
L.
,
Azzaro-Pantel
,
C.
, and
Domenech
,
S.
,
2015
, “
Optimization Methods Applied to the Design of Eco-Industrial Parks: A Literature Review
,”
J. Cleaner Prod.
,
87
, pp.
303
317
.
9.
Wang
,
L.
,
Ma
,
Y.
,
Zhang
,
J.
,
Zhang
,
X.
, and
Liu
,
Y.
,
2015
, “
Uncertainty Quantification and Structural Reliability Estimation Considering Inspection Data Scarcity
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst, Part A: Civil Eng.
,
1
(
2
), p.
04015004
.
10.
Afshari
,
H.
,
Peng
,
Q.
, and
Gu
,
P.
,
2016
, “
Design Optimization for Sustainable Products Under Users' Preference Changes
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
4
), p.
041001
.
11.
Afshari
,
H.
, and
Peng
,
Q.
,
2015
, “
Modeling and Quantifying Uncertainty in the Product Design Phase for Effects of User Preference Changes
,”
Ind. Manage. Data Syst.
,
115
(
9
), pp.
1637
1665
.
12.
Wynn
,
D. C.
,
Grebici
,
K.
, and
Clarkson
,
P. J.
,
2011
, “
Modelling the Evolution of Uncertainty Levels During Design
,”
Int. J. Interact. Des. Manuf.
,
5
(
3
), pp.
187
202
.
13.
Engelhardt
,
R.
,
Eifler
,
T.
,
Mathias
,
J.
,
Kloberdanz
,
H.
,
Birkhofer
,
H.
, and
Bohn
,
A.
,
2011
, “
An Approach to Analyse Uncertainties in the Product Development Process
,”
International Conference on Engineering Design
(
ICED11
),
Copenhagen,
Denmark
, pp.
433
442
.
14.
Saravi
,
M.
,
Goh
,
Y. M.
,
Newnes
,
L.
, and
Mileham
,
A.
,
2011
, “
Modeling Uncertainty in Through-Life Costing at the Early Design Stages-I
,”
ASME
Paper No. DETC2011-47863.
15.
Eifler
,
T.
,
Engelhardt
,
R.
,
Mathias
,
J.
,
Kloberdanz
,
H.
, and
Birkhofer
,
H.
,
2010
, “
An Assessment of Methods to Analyse Uncertainty in Different Stages of the Development Process
,”
ASME
Paper No. IMECE2010-39126.
16.
Anderi
,
R.
,
Mecke
,
K.
,
Sprenger
,
A.
, and
Weitzmann
,
O.
,
2010
, “
Ontology-Based System for the Control of Uncertainty in the Product Lifecycle
,”
TMCE Symposium
, Ancona, Italy, April 12–16, pp.
1259
72
.
17.
Zhu
,
J.
, and
Ruth
,
M.
,
2013
, “
Exploring the Resilience of Industrial Ecosystems
,”
J. Environ. Manage.
,
122
, pp.
65
75
.
18.
Korhonen
,
J.
, and
Seager
,
T. P.
,
2008
, “
Beyond Eco-Efficiency: A Resilience Perspective
,”
Bus. Strategy Environ.
,
17
(
7
), pp.
411
419
.
19.
Ayyub
,
B. M.
,
2015
, “
Practical Resilience Metrics for Planning, Design, and Decision Making
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civil Eng.
,
1
(
3
), p.
04015008
.
20.
Kastner
,
C.
,
Lau
,
R.
, and
Kraft
,
M.
,
2015
, “
Quantitative Tools for Cultivating Symbiosis in Industrial Parks; A Literature Review
,”
Appl. Energy
,
155
, pp.
599
612
.
21.
Dimian
,
A. C.
,
Bildea
,
C. S.
, and
Kiss
,
A. A.
,
2014
, “
Pinch Point Analysis
,”
Comp. Aided Chem. Eng.
,
35
, pp.
525
564
.
22.
Flower
,
J. R.
, and
Linnhoff
,
B.
,
1979
, “
Thermodynamic Analysis in the Design of Process Networks
,”
Comput. Chem. Eng.
,
3
(
1
), pp.
283
291
.
23.
Hasani
,
A.
, and
Khosrojerdi
,
A.
,
2016
, “
Robust Global Supply Chain Network Design Under Disruption and Uncertainty Considering Resilience Strategies: A Parallel Memetic Algorithm for a Real-Life Case Study
,”
Transp. Res. Part E: Logist. Transp. Rev.
,
87
, pp.
20
52
.
24.
Dhole
,
V. R.
, and
Linnhoff
,
B.
,
1993
, “
Total Site Targets for Fuel, Co-Generation, Emissions, and Cooling
,”
Comput. Chem. Eng.
,
17
(
Supplement 1
), pp.
101
109
.
25.
Maréchal
,
F.
, and
Kalitventzeff
,
B.
,
1998
, “
Energy Integration of Industrial Sites: Tools, Methodology and Application
,”
Appl. Therm. Eng.
,
18
(
11
), pp.
921
933
.
26.
Kenney
,
W. F.
,
1984
,
Energy Conservation in the Process Industries
,
Academic Press
,
San Diego, CA
.
27.
Hackl
,
R.
,
Harvey
,
S.
, and
Andersson
,
E.
,
2010
, “
Total Site Analysis (TSA)
,” Chalmers University of Technology, Stenungsund, Sweden.
28.
Shenoy
,
U. V.
,
2010
, “
Targeting and Design of Energy Allocation Networks for Carbon Emission Reduction
,”
Chem. Eng. Sci.
,
65
(
23
), pp.
6155
6168
.
29.
Chae
,
S. H.
,
Kim
,
S. H.
,
Yoon
,
S.-G.
,
Chae
,
S. H.
, and
Park
,
S.
,
2010
, “
Optimization of a Waste Heat Utilization Network in an Eco-Industrial Park
,”
Appl. Energy
,
87
(
6
), pp.
1978
1988
.
30.
Taskhiri
,
M. S.
,
Behera
,
S. K.
,
Tan
,
R. R.
, and
Park
,
H.-S.
,
2015
, “
Fuzzy Optimization of a Waste-to-Energy Network System in an Eco-Industrial Park
,”
J. Mater.Cycles Waste Manage.
,
17
(
3
), pp.
476
489
.
31.
Olesen
,
S.
, and
Polley
,
G.
,
1996
, “
Dealing With Plant Geography and Piping Constraints in Water Network Design
,”
Process Saf. Environ. Prot.
,
74
(
4
), pp.
273
276
.
32.
Foo
,
D. C. Y.
,
2009
, “
State-of-the-Art Review of Pinch Analysis Techniques for Water Network Synthesis
,”
Ind. Eng. Chem. Res.
,
48
(
11
), pp.
5125
5159
.
33.
Boix
,
M.
,
Montastruc
,
L.
,
Pibouleau
,
L.
,
Azzaro-Pantel
,
C.
, and
Domenech
,
S.
,
2012
, “
Industrial Water Management by Multiobjective Optimization: From Individual to Collective Solution Through Eco-Industrial Parks
,”
J. Cleaner Prod.
,
22
(
1
), pp.
85
96
.
34.
Cimren
,
E.
,
Fiksel
,
J.
,
Posner
,
M. E.
, and
Sikdar
,
K.
,
2012
, “
Material Flow Optimization in by-Product Synergy Networks
,”
J. Ind. Ecol.
,
15
(
2
), pp.
315
332
.
35.
Haslenda
,
H.
, and
Jamaludin
,
M. Z.
,
2011
, “
Industry to Industry By-Products Exchange Network Towards Zero Waste in Palm oil Refining Processes
,”
Resour., Conserv. Recycl.
,
55
(
7
), pp.
713
718
.
36.
Khosrojerdi
,
A.
,
Zegordi
,
S. H.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2016
, “
A Method for Designing Power Supply Chain Networks Accounting for Failure Scenarios and Preventive Maintenance
,”
Eng. Optim.
,
48
(
1
), pp.
154
172
.
37.
Sokka
,
L.
,
Pakarinen
,
S.
, and
Melanen
,
M.
,
2011
, “
Industrial Symbiosis Contributing to More Sustainable Energy Use—An Example From the Forest Industry in Kymenlaakso, Finland
,”
J. Cleaner Prod.
,
19
(
4
), pp.
285
293
.
38.
Gu
,
C.
,
Yassine
,
A.
,
Estel
,
L.
, and
Leveneur
,
S.
,
2013
, “
A Multiobjective Optimization Model for Designing and Optimizing an Ecological Industrial Park
,”
9th International Conference on Natural Computation
(
ICNC
), pp.
595
600
.
39.
Kim
,
S. H.
,
Yoon
,
S.-J.
,
Chae
,
S. H.
, and
Park
,
S.
,
2010
, “
Economic and Environmental Optimization of a Multi-Site Utility Network for an Industrial Complex
,”
J. Environ. Manage.
,
91
(
3
), pp.
690
705
.
40.
Côtéa
,
R. P.
, and
Cohen-Rosenthal
,
E.
,
1998
, “
Designing Eco-Industrial Parks: A Synthesis of Some Experiences
,”
J. Cleaner Prod.
,
6
(
3–4
), pp.
181
188
.
41.
Brownbridge
,
G.
,
Azadi
,
P.
,
Smallbone
,
A. J.
,
Bhave
,
A.
,
Taylor
,
B. J.
, and
Kraft
,
M.
,
2014
, “
The Future Viability of Algae-Derived Biodiesel Under Economic and Technical Uncertainties
,”
Bioresour. Technol.
,
151
, pp.
166
173
.
42.
Liu
,
S.
,
Gikas
,
P.
, and
Papageorgiou
,
L. G.
,
2010
, “
An Optimisation-Based Approach for Integrated Water Resources Management
,”
Comput. Aided Chem. Eng.
,
28
, pp.
1075
1080
.
43.
Ross
,
A. M.
, and
Hastings
,
D. E.
,
2006
, “
Assessing Changeability in Aerospace Systems Architecting and Design Using Dynamic Multi-Attribute Trade Space Exploration
,”
Collection of Technical Papers—Space 2006 Conference 1
, pp.
551
568
.
44.
Eckert
,
C.
,
Clarkson
,
J. P.
, and
Zanker
,
W.
,
2004
, “
Change and Customization in Complex Engineering Domains
,”
Res. Eng. Des.
,
15
(
1
), pp.
1
21
.
45.
Awudu
,
I.
, and
Zhang
,
J.
,
2012
, “
Uncertainties and Sustainability Concepts in Biofuel Supply Chain Management: A Review
,”
Renewable Sustainable Energy Rev.
,
16
(
2
), pp.
1359
1368
.
46.
Afshari
,
H.
,
Sharafi
,
M.
,
Elmekkawy
,
T. Y.
, and
Peng
,
Q.
,
2016
, “
Multi-Objective Optimization of Facility Location Decisions Within Integrated Forward/Reverse Logistics Under Uncertainty
,”
Int. J. Bus. Perform. Supply Chain Modell.
,
8
(
3
), pp.
250
276
.
47.
Lababidi
,
H. M. S.
,
El-Wakeel
,
M. A.
,
Alatiqi
,
I. M.
, and
Al-Enzi
,
A. F.
,
2004
, “
Optimizing the Supply Chain of a Petrochemical Company Under Uncertain Operational and Economical Conditions
,”
Ind. Eng. Chem. Res.
,
43
(
1
), pp.
63
73
.
48.
Kang
,
J.-S.
,
Chang
,
C.-C.
,
Lee
,
D.-Y.
, and
Lee
,
T.-Y.
,
2012
, “
Robust Optimization of Microgrids-An Application to Taichung Industrial Park
,”
11th International Symposium on Process Systems Engineering
, Parts A and B, Vol.
31
, pp.
1020
1024
.
49.
Nagel
,
J. B.
, and
Sudret
,
B.
,
2016
, “
Hamiltonian Monte Carlo and Borrowing Strength in Hierarchical Inverse Problems
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civil Eng.
,
2
(
3
), p.
B4015008
.
50.
Jung
,
J. Y.
,
Blau
,
G.
,
Pekny
,
J. F.
,
Reklaitis
,
G. V.
, and
Eversdyk
,
D.
,
2004
, “
A Simulation Based Optimization Approach to Supply Chain Management Under Demand Uncertainty
,”
Comput. Chem. Eng.
,
28
(
10
), pp.
2087
2106
.
51.
Miranda
,
P. A.
, and
Garrido
,
R. A.
,
2004
, “
Incorporating Inventory Control Decisions Into a Strategic Distribution Network Design Model With Stochastic Demand
,”
Transp. Res. Part E: Logist. Transp. Rev.
,
40
(
3
), pp.
183
207
.
52.
Khosrojerdi
,
A.
,
Xiao
,
M.
,
Sarikprueck
,
P.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2014
, “
Designing a System of Plug-in Hybrid Electric Vehicle Charging Stations
,”
ASME
Paper No. DETC2013-12764.
53.
Sharafi
,
M.
, and
ElMekkawy
,
T. Y.
,
2015
, “
Stochastic Optimization of Hybrid Renewable Energy Systems Using Sampling Average Method
,”
Renewable Sustainable Energy Rev.
,
52
, pp.
1668
1679
.
54.
Afshari
,
H.
,
Sharafi
,
M.
,
Elmekkawy
,
T. Y.
, and
Peng
,
Q.
,
2014
, “
Facility Location Decisions Within Integrated Forward/Reverse Logistics Under Uncertainty
,”
Procedia CIRP
,
17
, pp.
606
610
.
55.
Simangunsong
,
E.
,
Hendry
,
L. C.
, and
Stevenson
,
M.
,
2012
, “
Supply-Chain Uncertainty: A Review and Theoretical Foundation for Future Research
,”
Int. J. Prod. Res.
,
50
(
16
), pp.
4493
4523
.
56.
Skinner
,
D. J. C.
,
Rocks
,
S. A.
,
Simon
, and
Pollard
,
J. T.
,
2014
, “
A Review of Uncertainty in Environmental Risk: Characterising Potential Natures, Locations and Levels
,”
J. Risk Res.
,
17
(
2
), pp.
195
219
.
57.
Qiu
,
X.
, and
Huang
,
G. Q.
,
2011
, “
On Storage Capacity Pooling Through the Supply Hub in Industrial Park (SHIP): The Impact of Demand Uncertainty
,”
IEEE International Conference on Industrial Engineering and Engineering Management
, pp.
1745
1749
.
58.
Maes
,
T.
,
Van Eetvelde
,
G.
,
De Ras
,
E.
,
Block
,
C.
,
Pisman
,
A.
,
Verhofstede
,
B.
,
Vandendriessche
,
F.
, and
Vandevelde
,
L.
,
2011
, “
Energy Management on Industrial Parks in Flanders
,”
Renewable Sustainable Energy Rev.
,
15
(
4
), pp.
1988
2005
.
59.
Pérez-Valdés
,
G.
,
Kaut
,
M.
,
Nørstebø
,
V.
, and
Midthun
,
K.
,
2012
, “
Stochastic MIP Modeling of a Natural Gas-Powered Industrial Park
,”
Energy Procedia
,
26
, pp.
74
81
.
60.
Bergman
,
T. L.
, and
Incropera
,
F. P.
,
2011
,
Introduction to Heat Transfer
,
6th ed.
,
Wiley
,
Hoboken, NJ
.
61.
Giedt
,
W.
,
1971
,
Thermophysics
,
Van Nostrand Reinhold Company
,
New York
.
62.
Snyder
,
L. V.
,
2006
, “
Facility Location Under Uncertainty: A Review
,”
IIE Trans.
,
38
(
7
), pp.
547
564
.
63.
Gutjahr
,
W. J.
, and
Reiter
,
P.
,
2010
, “
Bi-Objective Project Portfolio Selection and Staff Assignment Under Uncertainty
,”
Optimization
,
59
(
3
), pp.
417
445
.
64.
Ben-Tal
,
A.
,
El Ghaoui
,
L.
, and
Nemirovski
,
A.
,
2009
,
Robust Optimization
,
Princeton University Press
,
Princeton, NJ
.
65.
Paragon Decision Technology B.V.
,
2016
, “
AIMMS Optimization Package Software
,” AAIMS, Bellevue, WA, last accessed November 2016, www.aimms.com
66.
Romero
,
E.
, and
Ruiz
,
M. C.
,
2014
, “
Proposal of an Agent-Based Analytical Model to Convert Industrial Areas in Industrial Eco-Systems
,”
Sci. Total Environ.
,
468–469
, pp.
394
405
.
You do not currently have access to this content.