This paper deals with an interval and fuzzy generalized eigenvalue problem involving uncertain parameters. Based on a sufficient regularity condition for intervals, an interval filtering eigenvalue procedure for generalized eigenvalue problems with interval parameters is proposed, which iteratively eliminates the parts that do not contain an eigenvalue and thus reduces the initial eigenvalue bound to a precise bound. The same iterative procedure has been proposed for generalized fuzzy eigenvalue problems. In general, the solution of dynamic problems of structures using the finite element method (FEM) leads to a generalized eigenvalue problem. Based on the proposed procedures, various structural examples with an interval and fuzzy parameter such as triangular fuzzy number (TFN) are investigated to show the efficiency of the algorithms stated. Finally, fuzzy filtered eigenvalue bounds are depicted by fuzzy plots using the α-cut.

References

References
1.
Gerald
,
C. F.
, and
Wheatley
,
P. O.
,
2009
,
Applied Numerical Analysis
,
Dorling Kindersley Pvt. Ltd.
,
New Delhi
.
2.
Bhat
,
R. B.
, and
Chakraverty
,
S.
,
2007
,
Numerical Analysis in Engineering
,
Alpha Science International Ltd.
,
New Delhi
.
3.
Humar
,
J. L.
,
2012
,
Dynamics of Structures
,
CRC Press
,
London
.
4.
Seshu
,
P.
,
2003
,
Textbook of Finite Element Analysis
,
PHI Learning Pvt. Ltd
,
New Delhi
.
5.
Alefeld
,
G.
, and
Herzberger
,
J.
,
1984
,
Introduction to Interval Computation
,
Academic Press
,
London
.
6.
Moore
,
R. E.
,
Kearfott
,
R. B.
, and
Cloud
,
M. J.
,
2009
,
Introduction to Interval Analysis
,
SIAM Publications
,
Philadelphia
.
7.
Rohn
,
J.
,
2005
,
A Handbook of Results on Interval Linear Problems
, accessed 20 Oct. 2014, http://www.nsc.ru/interval/Library/Surveys/ILinProblems.pdf.
8.
Rohn
,
J.
,
1998
, “
Bounds on Eigenvalues of Interval Matrices
,”
ZAMM J. Appl. Math. Mech.
,
78
(
S3
), pp.
1049
1050
.10.1002/zamm.v78.15s
9.
Jaulin
,
L.
,
Kieffer
,
M.
,
Didrit
,
O.
, and
Walter
,
E.
,
2001
,
Applied Interval Analysis-With Examples in Parameter and State Estimation, Robust Control and Robotics
,
Springer
,
London
.
10.
Rex
,
G.
, and
Rohn
,
J.
,
1998
, “
Sufficient Conditions for Regularity and Singularity of Interval Matrices
,”
SIAM J. Matrix Anal. Appl.
,
20
(
2
), pp.
437
445
.10.1137/S0895479896310743
11.
Hladik
,
M.
,
Daney
,
D.
, and
Tsigaridas
,
E.
,
2011
, “
A Filtering Method for the Interval Eigenvalue Problem
,”
Appl. Math. Comput.
,
217
(
12
), pp.
5236
5242
. 0096-300310.1016/j.amc.2010.09.066
12.
Leng
,
H.
,
2014
, “
Real Eigenvalue Bounds of Standard and Generalized Real Interval Eigenvalue Problems
,”
Appl. Math. Comput.
,
232
(
Apr.
), pp.
164
171
. 0096-300310.1016/j.amc.2014.01.070
13.
Qiu
,
Z.
,
Chen
,
S.
, and
Jia
,
H.
,
1995
, “
The Rayleigh Quotient Iteration Method for Computing Eigenvalue Bounds of Structures With Bounded Uncertain Parameters
,”
Comput. Struct.
,
55
(
2
), pp.
221
227
. 0045-794910.1016/0045-7949(94)00444-8
14.
Qiu
,
Z.
,
Wang
,
X.
, and
Friswell
,
M. I.
,
2005
, “
Eigenvalue Bounds of Structures With Uncertain-But-Bounded Parameters
,”
J. Sound Vibr.
,
282
(
1–2
), pp.
297
312
. 0022-460X10.1016/j.jsv.2004.02.051
15.
Sim
,
J.
,
Qiu
,
Z.
, and
Wang
,
X.
,
2007
, “
Modal Analysis of Structures With Uncertain but Bounded Parameters via Interval Analysis
,”
J. Sound Vibr.
,
303
(
1–2
), pp.
29
45
. 0022-460X10.1016/j.jsv.2006.11.038
16.
Leng
,
H.
,
He
,
Z.
, and
Yuan
,
Q.
,
2008
, “
Computing Bounds to Real Eigenvalues of Real Interval Matrices
,”
Int. J. Numer. Methods Eng.
,
74
(
4
), pp.
523
530
. 0029-598110.1002/(ISSN)1097-0207
17.
Leng
,
H.
, and
He
,
Z.
,
2010
, “
Computation of Bounds for Eigenvalues of Structures With Interval Parameters
,”
Appl. Math. Comput.
,
216
(
9
), pp.
2734
2739
. 0096-300310.1016/j.amc.2010.03.121
18.
Hladik
,
M.
,
2013
, “
Bounds on Eigenvalues of Real and Complex Interval Matrices
,”
Appl. Math. Comput.
,
219
(
10
), pp.
5584
5591
. 0096-300310.1016/j.amc.2012.11.075
19.
Leng
,
H.
, and
He
,
Z.
,
2007
, “
Computing Eigenvalue Bounds of Structures With Uncertain-But-Non-Random Parameters by a Method Based on Perturbation Theory
,”
Commun. Numer. Methods Eng.
,
23
(
11
), pp.
973
982
. 0748-802510.1002/cnm.936
20.
Qiu
,
Z.
,
Chen
,
S.
, and
Elishakoff
,
I.
,
1996
, “
Bounds of Eigenvalues for Structures With an Interval Description of Uncertain But-Non-Random Parameters
,”
Chaos Solitons Fractals
,
7
(
3
), pp.
425
434
.10.1016/0960-0779(95)00065-8
21.
Xia
,
Y.
, and
Friswell
,
M.
,
2014
, “
Efficient Solution of the Fuzzy Eigenvalue Problem in Structural Dynamics
,”
Eng. Comput.
,
31
(
5
), pp.
864
878
.10.1108/EC-02-2013-0052
22.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
1985
,
Matrix Analysis
,
Cambridge University Press
,
Cambridge, U.K
.
23.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
1994
,
Topics in Matrix Analysis
,
Cambridge University Press
,
Cambridge, U.K
.
24.
Hogben
,
L.
,
2006
,
Handbook of Linear Algebra
,
CRC Press
,
London
.
You do not currently have access to this content.