In general, the behavior of science and engineering is predicted based on nonlinear math models. Imprecise knowledge of the model parameters alters the system response from the assumed nominal model data. One proposes an algorithm for generating insights into the range of variability that can be expected due to model uncertainty. An automatic differentiation tool builds the exact partial derivative models required to develop a state transition tensor series (STTS)-based solution for nonlinearly mapping initial uncertainty models into instantaneous uncertainty models. The fully nonlinear statistical system properties are recovered via series approximations. The governing nonlinear probability distribution function is approximated by developing an inverse mapping algorithm for the forward series model. Numerical examples are presented, which demonstrate the effectiveness of the proposed methodology.

References

References
1.
Park
,
R. S.
, and
Scheeres
,
D. J.
,
2007
, “
Nonlinear Semi-Analytic Methods for Trajectory Estimation
,”
J. Guid. Control Dyn.
,
30
(
6
), pp. 
1668
1676
. 0731-509010.2514/1.29106
2.
Park
,
R. S.
, and
Scheeres
,
D. J.
,
2006
, “
Nonlinear Mapping of Gaussian Statistics: Theory and Applications to Spacecraft Trajectory Design
,”
J. Guid. Control Dyn.
,
29
(
6
), pp. 
1367
1375
. 0731-509010.2514/1.20177
3.
Younes
,
A. B.
, and
Turner
,
J.
,
2012
, “
High-Order Uncertainty Propagation Using State Transition Tensor Series
,”
Jer-Nan Juang Astrodynamics Symposium
,
Univelt, Inc.
,
San Diego, CA
, No. AAS 12-636.
4.
Turner
,
J.
, and
Younes
,
A. B.
,
2013
, “
On the Expected Value of Sensed Data
,”
23rd AAS/AIAA Space Flight Mechanics Meeting
,
Univelt, Inc.
,
San Diego, CA
, No. AAS 13-377.
5.
Younes
,
A. B.
,
Turner
,
J.
,
Majji
,
M.
, and
Junkins
,
J.
,
2012
, “Recent Advances in Algorithmic Differentiation,”
High-Order Uncertainty Propagation Enabled by Computational Differentiation
,
S. Forth
,
P. Hovland
,
E. Phipps
,
J. Utke
, and
A. Walther
, eds.,
Springer
,
Berlin/Heidelberg
, pp. 
251
260
.
6.
Younes
,
A. B.
, and
Turner
,
J.
,
2015
, “
System Uncertainty Propagation Using Automatic Differentiation
,”
Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition: Dynamics, Vibration, and Control
,
ASME
,
Houston, TX
,
Nov. 13–19
, Vol.
4A
, Paper No. IMECE2015-51412.
7.
Griffith
,
D. T.
,
Turner
,
J. D.
, and
Junkins
,
J. L.
,
2004
, “
An Embedded Function Tool for Modeling and Simulating Estimation Problems in Aerospace Engineering
,”
AAS/AIAA Spaceflight Mechanics Meeting
,
Univelt, Inc.
,
San Diego, CA
, No. AAS 04-148.
8.
Griffith
,
D. T.
,
Sinclair
,
A.
,
Turner
,
J. D.
,
Hurtado
,
J.
, and
John
,
J.
,
2004
, “
Automatic Generation and Integration of Equations of Motion by Operator Overloading Techniques
,”
AAS/AIAA Spaceflight Mechanics Meeting
,
Univelt, Inc.
,
San Diego, CA
, No. AAS 04-242.
9.
Majji
,
M.
,
Junkins
,
J.
, and
Turner
,
J.
,
2008
, “
A High Order Method for Estimation of Dynamic Systems
,”
J. Astronaut. Sci.
,
56
(
3
), pp. 
401
440
. 0021-914210.1007/BF03256560
10.
Majji
,
M.
,
Junkins
,
J.
, and
Turner
,
J.
,
2010
, “
A Perturbation Method for Estimation of Dynamic Systems
,”
Nonlinear Dyn.
,
60
(
3
), pp. 
303
325
. 0924-090X10.1007/s11071-009-9597-6
11.
Xiu
,
D.
,
2010
,
Numerical Methods for Stochastic Computations: A Spectral Method Approach
,
Princeton University Press
,
Princeton, NJ
.
12.
Fujimoto
,
K.
,
Scheeres
,
D.
, and
Alfriend
,
K.
,
2012
, “
Analytical Nonlinear Propagation of Uncertainty in the Two-Body Problem
,”
J. Guid. Control Dyn.
,
35
(
2
), pp. 
497
509
. 0731-509010.2514/1.54385
13.
Majji
,
M.
,
Weisman
,
R.
, and
Alfriend
,
K.
,
2012
, “
Solution of the Liouvilles Equation for Keplerian Motion: Application to Uncertainty Calculations
,”
22nd AAS/AIAA Space Flight Mechanics Meeting
,
Univelt, Inc.
,
San Diego, CA
, Vol. 
143
.
14.
Turner
,
J. D.
,
Majji
,
M.
, and
Junkins
,
J. L.
,
2011
, “
Keynote Paper: High Accuracy Trajectory and Uncertainty Propagation Algorithm for Long-Term Asteroid Motion Prediction
,”
Proceedings of the International Conference on Computational and Experimental Engineering and Sciences
,
Nanjing, China
,
Apr. 17–21
.
15.
Bischof
,
C. H.
,
Carle
,
A.
,
Hovland
,
P. D.
,
Khademi
,
P.
, and
Mauer
,
A.
,
1998
, “
ADIFOR 2.0 User’s Guide (Revision D)
,”
Mathematics and Computer Science Division
, Technical Memorandum No. 192, and
Center for Research on Parallel Computation
, Technical Report CRPC-95516-S.
16.
Griewank
,
A.
,
1989
, “On Automatic Differentiation,”
Mathematical Programming
,
M. Iri
and
K. Tanabe
, eds.,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, pp. 
83
108
.
17.
Wengert
,
R. E.
,
1964
, “
A Simple Automatic Derivative Evaluation Program
,”
Commun. ACM
,
7
(
8
), pp.
463
464
. 0001-078210.1145/355586.364791
18.
Wilkins
,
R. D.
,
1964
, “
Investigation of a New Analytical Method for Numerical Derivative Evaluation
,”
Commun. ACM
,
7
(
8
), pp. 
465
471
. 0001-078210.1145/355586.364792
19.
Bischof
,
C.
, and
Eberhard
,
P.
,
1996
, “
Automatic Differentiation of Numerical Integration Algorithms
,”
Mathematics and Computer Science Division, Argonne National Laboratory
,
Argonne, IL
, Tech. Rep. ANL/MCS-P621-1196.
20.
Bischof
,
C.
,
Carle
,
A.
,
Corliss
,
G.
,
Griewank
,
A.
, and
Hovland
,
P.
,
1992
, “
Adifor: Generating Derivative Codes From Fortran Programs
,”
Sci. Programm.
,
1
(
1
), pp. 
1
29
.
21.
Turner
,
J. D.
,
2003
, “
Automated Generation of High-Order Partial Derivative Models
,”
AIAA J.
,
41
(
8
), pp.
1590
1598
. 0001-145210.2514/2.2112
22.
Griffith
,
D. T.
,
Turner
,
J. D.
, and
Junkins
,
J. L.
,
2005
, “
Automatic Generation and Integration of Equation of Motion for Flexible Multibody Dynamical Systems
,”
AAS J. Astronaut. Sci.
,
53
(
3
), pp. 
251
279
.
23.
Younes
,
A. B.
,
Turner
,
J.
,
Majji
,
M.
, and
Junkins
,
J.
,
2010
, “
An Investigation of State Feedback Gain Sensitivity Calculations
,”
AIAA/AAS Astrodynamics Specialist Conference: Guidance, Navigation, and Control
, No. AIAA-2010-8274.
24.
Younes
,
A. B.
, and
Turner
,
J.
,
2012
, “
Numerical Integration of Constrained Multi-Body Dynamics Using 5th Order Exact Analytic Continuation Algorithm
,”
Jer-Nan Juang Astrodynamics Symposium
,
Univelt, Inc.
,
San Diego, CA
, No. AAS 12-638.
25.
Younes
,
A. B.
,
Turner
,
J.
,
Majji
,
M.
, and
Junkins
,
J.
,
2012
, “
High-Order State Feedback Gain Sensitivity Calculations: Using Computational Differentiation
,”
Jer-Nan Juang Astrodynamics Symposium
,
Univelt, Inc.
,
San Diego, CA
, No. AAS 12-637.
26.
Younes
,
A. B.
,
Turner
,
J.
,
Majji
,
M.
, and
Junkins
,
J.
,
2011
, “
Nonlinear Tracking Control of Maneuvering Rigid Spacecraft
,” No. AAS 11-168, Advances in the Astronautical Sciences,
Univelt, Inc.
,
San Diego, CA
, Vol. 
140
.
27.
Younes
,
A. B.
, and
Turner
,
J.
,
2015
, “
Generalized Least Squares and Newton’s Method Algorithms for Nonlinear Root-Solving Applications
,”
J. Astronaut. Sci.
,
60
(
3
), pp.
517
540
. 0021-9142
28.
Younes
,
A. B.
, and
Turner
,
J.
,
2015
, “
Feedback Control Sensitivity Calculations Using Computational Differentiation
,”
Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition: Dynamics, Vibration, and Control
,
ASME
,
Houston, TX
, Vol.
4B
, No. IMECE2015-51439.
29.
Younes
,
A. B.
, and
Turner
,
J.
,
2014
, “
An Analytic Continuation Method to Integrate Constrained Multibody Dynamical Systems
,”
Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition: Dynamics, Vibration, and Control
,
ASME
,
Montreal, QC
,
Nov. 14–20
, Vol.
4B
, No. IMECE2014-37809.
30.
Younes
,
A. B.
,
Turner
,
J.
, and
Junkins
,
J.
,
2013
, “
Higher-Order Optimal Tracking Feedback Gain Sensitivity Calculations: Using Computational Differentiation
,”
Proceedings of the 36th Annual AAS Rocky Mountain Section Guidance and Control Conference
,
Univelt, Inc.
,
San Diego, CA
, No. AAS 13-017.
31.
Macsyma, Inc.
,
1995
,
Macsyma, Symbolic/Numeric/Graphical Mathematics Software: Mathematics and System Reference Manual
,
15th ed
,
Macsyma, Inc
.
32.
Turner
,
J.
,
2006
,
OCEA User Manual
,
AMDYN SYSTEMS Inc.
,
Plano, TX
.
33.
Hahn
,
T.
,
2005
, “
Cubaa Library for Multidimensional Numerical Integration
,”
Comput. Phys. Commun.
,
168
(
2
), pp.
78
95
. 0010-465510.1016/j.cpc.2005.01.010
You do not currently have access to this content.