The use of classification techniques for machine health monitoring and fault diagnosis has been popular in recent years. System response in the form of time series data can be used to identify the type of defect and severity of defect. However, a central issue with time series classification is that of identifying appropriate features for classification. In this paper, we explore a new feature set based on delay differential equations (DDEs). DDEs have been used recently for extracting features for classification but have never been used to classify system responses. The Duffing oscillator, Van der Pol–Duffing (VDP-D) oscillator, Lu oscillator, and Chen oscillator are used as examples for dynamic systems, and the responses are classified into self-similar groups. Responses with the same period should belong to the same group. Misclassification rate is used as an indicator of the efficacy of the feature set. The proposed feature set is compared to a statistical feature set, a power spectral coefficient feature set, and a wavelet coefficient feature set. In the work described in this paper, a density-estimation algorithm called DBSCAN is used as the classification algorithm. The proposed DDE-based feature set is found to be significantly better than the other feature sets for classifying responses generated by the Duffing, Lu, and Chen systems. The wavelet and power spectral coefficient data sets are not found to be significantly better than the statistical feature set for these systems. None of the feature sets tested is discerning enough on the VDP-D system.

References

References
1.
Yang
,
J.
,
Zhang
,
Y.
, and
Zhu
,
Y.
,
2006
, “
Intelligent Fault Diagnosis of Rolling Element Bearing Based on SVMs and Fractal Dimension
,”
Mech. Syst. Signal Process.
,
21
(
5
), pp. 
2012
2024
.10.1016/j.ymssp.2006.10.005
2.
Sanz
,
J.
,
Perera
,
R.
, and
Huerta
,
C.
,
2007
, “
Fault Diagnosis of Rotating Machinery Based on Auto-Associative Neural Networks and Wavelet Transforms
,”
J. Sound Vibr.
,
302
(
4–5
), pp. 
981
999
.10.1016/j.jsv.2007.01.006
3.
Lui
,
B.
,
2006
, “
Selection of Wavelet Packet Basis for Rotating Machinery Fault Diagnosis
,”
J. Sound Vibr.
,
284
(
3–5
), pp. 
567
582
.
4.
Wong
,
M. L. D.
,
Jack
,
L. B.
, and
Nandi
,
A. K.
,
2006
, “
Modified Self-Organizing Map for Automated Novelty Detection Applied to Vibration Signal Monitoring
,”
Mech. Syst. Signal Process.
,
20
(
3
), pp. 
593
610
.10.1016/j.ymssp.2005.01.008
5.
Ocak
,
H.
,
Loparo
,
K. A.
, and
Discenzo
,
F. M.
,
2007
, “
Online Tracking of Bearing Wear Using Wavelet Packet Decomposition and Probabilistic Modeling—A Method for Bearing Prognostics
,”
J. Sound Vibr.
,
302
(
4–5
), pp. 
951
961
.10.1016/j.jsv.2007.01.001
6.
Lee
,
J.
,
We
,
F.
,
Zhao
,
W.
,
Ghaffari
,
M.
,
Liao
,
L.
, and
Siegel
,
D.
,
2014
, “
Prognostics and Health Management Design for Rotary Machinery Systems—Reviews, Methodology and Applications
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp. 
314
334
.10.1016/j.ymssp.2013.06.004
7.
Lei
,
Y.
,
He
,
Z.
, and
Zi
,
Y.
,
2009
, “
Application of an Intelligent Classification Method to Mechanical Fault Diagnosis
,”
Expert Syst. Appl.
,
36
(
6
), pp. 
9941
9948
.10.1016/j.eswa.2009.01.065
8.
Zhou
,
L.
,
2005
, “
Neural Networks Based on Fuzzy Clustering and Its Applications in Electrical Equipment’s Fault Diagnosis
,”
Proceedings of IEEE International Conference on Machine Learning and Cybernetics
,
Guangzhou, China
, Vol. 
7
, pp. 
3396
3999
.10.1109/ICMLC.2005.1527636
9.
Chan
,
E. Y.
,
Ching
,
W. K.
,
Ng
,
M. K.
, and
Huang
,
J. Z.
,
2004
, “
An Optimization Algorithm for Clustering Using Weighted Dissimilarity Measures
,”
Pattern Recognit.
,
37
(
5
), pp. 
943
952
.10.1016/j.patcog.2003.11.003
10.
Saravanan
,
N.
,
Cholairajan
,
S.
, and
Ramachandran
,
K. I.
,
2009
, “
Vibration-Based Fault Diagnosis of Spur Bevel Gear Box Using Fuzzy Technique
,”
Expert Syst. Appl.
,
36
(
2
), pp. 
3119
3135
.10.1016/j.eswa.2008.01.010
11.
Wang
,
X.
,
Wang
,
Y.
, and
Wang
,
L.
,
2004
, “
Improving Fuzzy C-Means Clustering Based on Feature-Weight Learning
,”
Pattern Recognit. Lett.
,
25
(
10
), pp. 
1123
1132
.10.1016/j.patrec.2004.03.008
12.
Lei
,
Y.
,
He
,
Z.
,
Zi
,
Y.
, and
Chen
,
X.
,
2008
, “
New Clustering Algorithm-Based Fault Diagnosis Using Compensation Distance Evaluation Technique
,”
Mech. Syst. Signal Process.
,
22
(
2
), pp. 
419
435
.10.1016/j.ymssp.2007.07.013
13.
Yiakopoulos
,
C. T.
,
Gryllias
,
K. C.
, and
Antoniadis
,
I. A.
,
2011
, “
Rolling Element Bearing Fault Detection in Industrial Environments Based on a K-Means Clustering Approach
,”
Expert Syst. Appl.
,
38
(
3
), pp. 
2888
2911
.10.1016/j.eswa.2010.08.083
14.
Lu
,
J.
,
Chen
,
G.
,
Cheng
,
D.
, and
Celikovsky
,
S.
,
2002
, “
Bridge the Gap Between the Lorenz System and the Chen System
,”
Int. J. Bifurcation Chaos
,
12
(
12
), pp. 
2917
2926
.10.1142/S021812740200631X
15.
Chen
,
S.
, and
Lu
,
J.
,
2002
, “
Synchronization of an Uncertain Unified Chaotic System via Adaptive Control
,”
Chaos Solitons Fractals
,
14
(
4
), pp. 
643
647
.10.1016/S0960-0779(02)00006-1
16.
Ueta
,
T.
, and
Chen
,
G.
,
2000
, “
Bifurcation Analysis of Chen’s Equation
,”
Int. J. Bifurcation Chaos
,
10
(
8
), pp. 
1917
1931
.
17.
Esling
,
P.
, and
Agon
,
C.
,
2012
, “
Time-Series Data Mining
,”
ACM Comput. Surv.
,
45
(
1
), pp. 
1
34
.10.1145/2379776
18.
Nanopoulos
,
A.
,
Alcock
,
R.
, and
Manolopoulos
,
Y.
,
2001
, “
Feature-Based Classification of Time-Series Data
,”
Int. J. Comput. Res.
,
10
(
3
), pp. 
49
61
.
19.
Agrawal
,
R.
,
Faloutsos
,
C.
, and
Swami
,
A.
,
1993
, “
Efficient Similarity Search in Sequence Databases
,”
Proceedings of International Conference on Foundations of Data Organization and Algorithms
,
Springer
,
London
, pp. 
69
84
.
20.
Faloutsos
,
C.
,
Ranganathan
,
M.
, and
Manolopulos
,
Y.
,
1994
, “
Fast Subsequence Matching in Time-Series Databases
,”
Proceedings of ACM SIGMOD International Conference on the Management of Data
,
ACM Press
,
New York, NY
, pp. 
419
429
.10.1145/191843.191925
21.
Struzik
,
Z. R.
, and
Siebes
,
A.
,
1999
, “
Measuring Time Series Similarity Through Large Singular Features Revealed With Wavelet Transformation
,”
Proceedings of 10th International Workshop on Database and Expert Systems Applications
,
IEEE Computer Society
,
Los Alamitos, CA
, pp. 
162
166
.
22.
Janacek
,
G.
,
Bagnall
,
A.
, and
Powell
,
M.
,
2005
, “A Likelihood Ratio Distance Measure for the Similarity Between the Fourier Transform of Time Series,”
Advances in Knowledge Discovery and Data Mining
(Lecture Notes in Computer Science, Vol. 
3518
),
Springer
,
New York
, pp. 
737
743
.
23.
Vlachos
,
M.
,
Yu
,
P.
, and
Castelli
,
V.
,
2005
, “
On Periodicity Detection and Structural Periodic Similarity
,”
Proceedings of SIAM International Conference on Data Mining
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
, pp. 
449
460
.10.1137/1.9781611972757.40
24.
Papadimitriou
,
S.
,
Sun
,
J.
, and
Yu
,
P.
,
2006
, “
Local Correlation Tracking in Time Series
,”
Proceedings of International Conference on Data Mining
,
IEEE Computer Society
,
Los Alamitos, CA
, pp. 
456
465
.10.1109/ICDM.2006.99
25.
Rafiei
,
D.
, and
Mendelzon
,
A.
,
1997
, “
Similarity-Based Queries for Time Series Data
,”
Proceedings of ACM SIGMOD International Conference on the Management of Data
,
ACM Press
,
New York, NY
, pp. 
13
25
.10.1145/253260.253264
26.
Lainscsek
,
C.
, and
Sejnowsku
,
T. J.
,
2015
, “
Delay Differential Analysis of Time Series
,”
Neural Comput.
,
27
(
3
), pp. 
594
614
.10.1162/NECO_a_00706
27.
Judd
,
K.
, and
Mees
,
A.
,
1998
, “
Embedding as a Modeling Problem
,”
Phys. D: Nonlinear Phenom.
,
120
(
3–4
), pp. 
273
286
.10.1016/S0167-2789(98)00089-X
28.
Lainscsek
,
C.
,
Rowat
,
P.
,
Schettino
,
L.
,
Lee
,
D.
,
Song
,
D.
,
Letellier
,
C.
, and
Poizner
,
H.
,
2012
, “
Finger Tapping Movements of Parkinson’s Disease Patients Automatically Rated Using Nonlinear Delay Differential Equations
,”
Chaos
,
22
(
1
), pp. 
0131191
01311913
.10.1063/1.3683444
29.
Liao
,
T. W.
, “
Clustering of Time Series Data—A Survey
,”
Pattern Recognit.
,
38
(
11
), pp. 
1857
1874
.10.1016/j.patcog.2005.01.025
30.
Shaw
,
C. T.
, and
King
,
G. P.
,
1992
, “
Using Cluster Analysis to Classify Time Series
,”
Physica D
,
58
(
1–4
), pp. 
288
298
. 0167-278910.1016/0167-2789(92)90117-6
31.
Vlachos
,
M.
,
Lin
,
J.
,
Keogh
,
E.
, and
Gunopulos
,
D.
,
2003
, “
A Wavelet-Based Anytime Algorithm for k-Means Clustering of Time Series
,”
Proceedings of Workshop on Clustering High Dimensionality Data and its Applications
,
SIAM International Conference on Data Mining, Society for Industrial and Applied Mathematics
,
Philadelphia, PA
, pp. 
23
30
.
32.
Jain
,
A. K.
, and
Dubes
,
R. C.
,
1998
,
Algorithms for Clustering Data
,
Prentice Hall
,
Englewood Cliffs, NJ
.
33.
Ester
,
M.
,
Krigel
,
H.-P.
,
Sander
,
J.
, and
Xu
,
X.
,
1996
, “
A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases With Noise
,”
Proceedings of International Conference on Knowledge Discovery and Data Mining
, pp. 
226
231
.
34.
Daniel
,
W.
,
1990
,
Applied Nonparametric Statistics
,
Duxbury Thomson Learning
,
Pacific Grove, CA
.
You do not currently have access to this content.