Limited data of stochastic load processes and system random variables result in uncertainty in the results of time-dependent reliability analysis. An uncertainty quantification (UQ) framework is developed in this paper for time-dependent reliability analysis in the presence of data uncertainty. The Bayesian approach is employed to model the epistemic uncertainty sources in random variables and stochastic processes. A straightforward formulation of UQ in time-dependent reliability analysis results in a double-loop implementation procedure, which is computationally expensive. This paper proposes an efficient method for the UQ of time-dependent reliability analysis by integrating the fast integration method and surrogate model method with time-dependent reliability analysis. A surrogate model is built first for the time-instantaneous conditional reliability index as a function of variables with imprecise parameters. For different realizations of the epistemic uncertainty, the associated time-instantaneous most probable points (MPPs) are then identified using the fast integration method based on the conditional reliability index surrogate without evaluating the original limit-state function. With the obtained time-instantaneous MPPs, uncertainty in the time-dependent reliability analysis is quantified. The effectiveness of the proposed method is demonstrated using a mathematical example and an engineering application example.

References

References
1.
Stewart
,
M. G.
, and
Rosowsky
,
D. V.
,
1998
, “
Time-Dependent Reliability of Deteriorating Reinforced Concrete Bridge Decks
,”
Struct. Saf.
,
20
(
1
), pp.
91
109
.10.1016/S0167-4730(97)00021-0
2.
Madsen
,
H. O.
, and
Tvedt
,
L.
,
1990
, “
Methods for Time-Dependent Reliability and Sensitivity Analysis
,”
J. Eng. Mech.
,
116
(
10
), pp.
2118
2135
. 0733-939910.1061/(ASCE)0733-9399(1990)116:10(2118)
3.
Huang
,
X.
, and
Chen
,
J.
,
2014
, “
Time-Dependent Reliability Model of Deteriorating Structures Based on Stochastic Processes and Bayesian Inference Methods
,”
J. Eng. Mech. ASCE
,
141
(
3
), pp.
04014123
.
4.
Kuschel
,
N.
, and
Rackwitz
,
R.
,
2000
, “
Optimal Design Under Time-Variant Reliability Constraints
,”
Struct. Saf.
,
22
(
2
), pp.
113
127
.10.1016/S0167-4730(99)00043-0
5.
Rackwitz
,
R.
,
2001
, “
Reliability Analysis—A Review and Some Perspectives
,”
Struct. Saf.
,
23
(
4
), pp.
365
395
.10.1016/S0167-4730(02)00009-7
6.
Mori
,
Y.
, and
Ellingwood
,
B. R.
,
1993
, “
Time-Dependent System Reliability Analysis by Adaptive Importance Sampling
,”
Struct. Saf.
,
12
(
1
), pp.
59
73
.10.1016/0167-4730(93)90018-V
7.
Mori
,
Y.
, and
Ellingwood
,
B. R.
,
1993
, “
Reliability-Based Service-Life Assessment of Aging Concrete Structures
,”
J. Struct. Eng.
,
119
(
5
), pp.
1600
1621
.10.1061/(ASCE)0733-9445(1993)119:5(1600)
8.
Zheng
,
R.
, and
Ellingwood
,
B. R.
,
1998
, “
Role of Non-Destructive Evaluation in Time-Dependent Reliability Analysis
,”
Struct. Saf.
,
20
(
4
), pp.
325
339
.10.1016/S0167-4730(98)00021-6
9.
Hagen
,
Ø.
, and
Tvedt
,
L.
,
1991
, “
Vector Process Out-Crossing as Parallel System Sensitivity Measure
,”
J. Eng. Mech.
,
117
(
10
), pp.
2201
2220
. 0733-939910.1061/(ASCE)0733-9399(1991)117:10(2201)
10.
Hagen
,
O.
, and
Tvedt
,
L.
,
1992
, “
Parallel System Approach for Vector Out-Crossing
,”
ASME J. Offshore Mech. Arct. Eng.
,
114
(
2
), pp.
122
128
.10.1115/1.2919959
11.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
.10.1016/j.ress.2003.10.005
12.
Sudret
,
B.
,
2008
, “
Analytical Derivation of the Outcrossing Rate in Time-Variant Reliability Problems
,”
Struct. Infrastruct. Eng.
,
4
(
5
), pp.
353
362
.10.1080/15732470701270058
13.
Sudret
,
B.
,
Defaux
,
G.
, and
Pendola
,
M.
,
2005
, “
Time-Variant Finite Element Reliability Analysis: Application to the Durability of Cooling Towers
,”
Struct. Saf.
,
27
(
2
), pp.
93
112
.10.1016/j.strusafe.2004.05.001
14.
Sudret
,
B.
,
2008
, “
Probabilistic Models for the Extent of Damage in Degrading Reinforced Concrete Structures
,”
Reliab. Eng. Syst. Saf.
,
93
(
3
), pp.
410
422
.10.1016/j.ress.2006.12.019
15.
Chen
,
J.-B.
, and
Li
,
J.
,
2005
, “
Dynamic Response and Reliability Analysis of Non-Linear Stochastic Structures
,”
Probab. Eng. Mech.
,
20
(
1
), pp.
33
44
. 0266-892010.1016/j.probengmech.2004.05.006
16.
Billinton
,
R.
, and
Cui
,
Y.
, “
Reliability Evaluation of Small Stand-Alone Wind Energy Conversion Systems Using a Time Series Simulation Model
,”
IEE Proceedings of Generation, Transmission and Distribution
,
IET
,
Stevenage, United Kingdom
, pp.
96
100
.
17.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Upcrossing Rates
,”
Struct. Multidiscip. Optim.
,
48
(
5
), pp.
893
907
. 1615-148810.1007/s00158-013-0937-2
18.
Der Kiureghian
,
A.
, and
Liu
,
P.-L.
,
1986
, “
Structural Reliability Under Incomplete Probability Information
,”
J. Eng. Mech.
,
112
(
1
), pp.
85
104
. 0733-939910.1061/(ASCE)0733-9399(1986)112:1(85)
19.
Kiureghian
,
A. D.
,
1989
, “
Measures of Structural Safety Under Imperfect States of Knowledge
,”
J. Struct. Eng.
,
115
(
5
), pp.
1119
1140
.10.1061/(ASCE)0733-9445(1989)115:5(1119)
20.
Der Kiureghian
,
A.
,
2008
, “
Analysis of Structural Reliability Under Parameter Uncertainties
,”
Probab. Eng. Mech.
,
23
(
4
), pp.
351
358
. 0266-892010.1016/j.probengmech.2007.10.011
21.
Der Kiureghian
,
A.
, and
Ditlevsen
,
O.
,
2009
, “
Aleatory or Epistemic? Does it Matter?
,”
Struct. Saf.
,
31
(
2
), pp.
105
112
.10.1016/j.strusafe.2008.06.020
22.
Schöbi
,
R.
, and
Sudret
,
B.
,
2015
, “
Imprecise Structural Reliability Analysis Using PC-Kriging
,”
Annual European Safety and Reliability Conference
,
ETH
,
Zürich
.10.3929/ethz-a-010494143
23.
Li
,
G.-Y.
,
Wu
,
Q.-G.
, and
Zhao
,
Y.-H.
,
2002
, “
On Bayesian Analysis of Binomial Reliability Growth
,”
J. Jan. Stat. Soc.
,
32
(
1
), pp.
1
14
.10.14490/jjss.32.1
24.
Wang
,
P.
,
Youn
,
B. D.
,
Xi
,
Z.
, and
Kloess
,
A.
,
2009
, “
Bayesian Reliability Analysis With Evolving, Insufficient, and Subjective Data Sets
,”
J. Mech. Des.
,
131
(
11
), p.
111008
.10.1115/1.4000251
25.
Coolen
,
F.
, and
Newby
,
M.
,
1994
, “
Bayesian Reliability Analysis With Imprecise Prior Probabilities
,”
Reliab. Eng. Syst. Saf.
,
43
(
1
), pp.
75
85
.10.1016/0951-8320(94)90096-5
26.
Hu
,
Z.
, and
Du
,
X.
,
2014
, “
Lifetime Cost Optimization With Time-Dependent Reliability
,”
Eng. Optim.
,
46
(
10
), pp.
1389
1410
. 0305-215X10.1080/0305215X.2013.841905
27.
Pearce
,
H. T.
, and
Wen
,
Y.
,
1984
, “
Stochastic Combination of Load Effects
,”
J. Struct. Eng.
,
110
(
7
), pp.
1613
1629
.10.1061/(ASCE)0733-9445(1984)110:7(1613)
28.
Faber
,
M.
, and
Rackwitz
,
R.
,
1991
, “
The Ergodicity Assumption for Sea States in the Reliability Estimation of Offshore Structures
,”
ASME J. Offshore Mech. Arct. Eng.
,
113
(
3
), p.
241
.10.1115/1.2919926
29.
Beck
,
A. T.
, and
Melchers
,
R. E.
,
2005
, “
Barrier Failure Dominance in Time Variant Reliability Analysis
,”
Probab. Eng. Mech.
,
20
(
1
), pp.
79
85
. 0266-892010.1016/j.probengmech.2004.05.007
30.
Beck
,
A. T.
, and
Melchers
,
R. E.
,
2004
, “
On the Ensemble Crossing Rate Approach to Time Variant Reliability Analysis of Uncertain Structures
,”
Probab. Eng. Mech.
,
19
(
1
), pp.
9
19
. 0266-892010.1016/j.probengmech.2003.11.018
31.
Beck
,
A.
,
2008
, “
The Random Barrier-Crossing Problem
,”
Probab. Eng. Mech.
,
23
(
2
), pp.
134
145
. 0266-892010.1016/j.probengmech.2007.12.001
32.
Vanmarcke
,
E. H.
,
1975
, “
On the Distribution of the First-Passage Time for Normal Stationary Random Processes
,”
ASME J. Appl. Mech.
,
42
(
1
), pp.
215
220
. 0021-893610.1115/1.3423521
33.
Madsen
,
P. H.
, and
Krenk
,
S.
,
1984
, “
An Integral Equation Method for the First-Passage Problem in Random Vibration
,”
ASME J. Appl. Mech.
,
51
(
3
), pp.
674
679
. 0021-893610.1115/1.3167691
34.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
First Order Reliability Method for Time-Variant Problems Using Series Expansions
,”
Struct. Multidiscip. Optim.
,
51
(
1
), pp.
1
21
. 1615-148810.1007/s00158-014-1132-9
35.
Singh
,
A.
,
Mourelatos
,
Z.
, and
Nikolaidis
,
E.
,
2011
, “
Time-Dependent Reliability of Random Dynamic Systems Using Time-Series Modeling and Importance Sampling
,” SAE Technical Paper.
36.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051401
.10.1115/1.4029520
37.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2015
, “
Time-Dependent System Reliability Analysis Using Random Field Discretization
,”
ASME J. Mech. Des.
,
137
(
10
), p.
101404
.10.1115/1.4031337
38.
Hu
,
Z.
, and
Du
,
X.
,
2012
, “
Reliability Analysis for Hydrokinetic Turbine Blades
,”
Renewable Energy
,
48
(
1
), pp.
251
262
. 0960-148110.1016/j.renene.2012.05.002
39.
Sudret
,
B.
, and
Der Kiureghian
,
A.
,
2000
,
Stochastic Finite Element Methods and Reliability: A State-of-the-Art Report
,
Department of Civil and Environmental Engineering, University of California
,
Oakland, CA
.
40.
Shumway
,
R. H.
, and
Stoffer
,
D. S.
,
2009
,
Time Series Analysis and its Applications
,
Springer
,
New York
.
41.
Box
,
G. E.
,
Jenkins
,
G. M.
, and
Reinsel
,
G. C.
,
2013
,
Time Series Analysis: Forecasting and Control
,
Wiley
,
Hoboken, NJ
.
42.
Ling
,
Y.
, and
Mahadevan
,
S.
,
2012
, “
Integration of Structural Health Monitoring and Fatigue Damage Prognosis
,”
Mech. Syst. Signal Process.
,
28
(
1
), pp.
89
104
.10.1016/j.ymssp.2011.10.001
43.
Neal
,
R. M.
,
2003
, “
Slice sampling
,”
Ann. Stat.
,
31
(
3
), pp.
705
741
.
44.
Wen
,
Y.
, and
Chen
,
H.-C.
,
1987
, “
On Fast Integration for Time Variant Structural Reliability
,”
Stochastic Approaches in Earthquake Engineering
,
Springer
,
New York
, pp.
428
454
.
45.
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
46.
Dubourg
,
V.
,
Sudret
,
B.
, and
Deheeger
,
F.
,
2013
, “
Metamodel-Based Importance Sampling for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
33
(
1
), pp.
47
57
. 0266-892010.1016/j.probengmech.2013.02.002
47.
Hammersley
,
J. M.
,
1960
, “
Monte Carlo Methods for Solving Multivariable Problems
,”
Ann. N. Y. Acad. Sci.
,
86
(
3
), pp.
844
874
. 0077-892310.1111/j.1749-6632.1960.tb42846.x
You do not currently have access to this content.