This paper presents a methodology to identify hazards associated with electric-induced drowning and electric shocks for swimmers around docks, houseboats, and other boats in both freshwater and saltwater; assesses scenarios and risks associated with these hazards; and provides information needed to communicate results of the study to the public. The methodology consists of system definition, hazard identification, scenario assessment, risk assessment including likelihood and consequences in the form of health effects, and identification of potential hazard barriers and mitigations. Critical scenarios were identified and assessed according to weighting criteria, and the results were prioritized and used to define the parametric analysis ranges that needed to be performed using simulation. Event and fault trees (FTs) were developed for the critical scenarios. Shock safety criteria were defined by reviewing standards, such as the IEEE Standard for Shock Safety and the IEC Standard for Shock Safety. These results were used to determine critical voltage differential and current thresholds.

References

References
1.
Center for Disease Control
,
1992
, “
Drownings at U.S. Army Corps of Engineers Recreation Facilities, 1986–1990
,”
Morb. Mortal Weekly Rep. (MMWR)
,
41
(
19
), pp. 
331
333
.
2.
Oklahoma State Department of Health
,
1996
, “Injury Prevention Service,”
Summary of Reportable Injuries in Oklahoma, 1988–1994
,
Oklahoma State Department of Health
,
Oklahoma City, OK
.
3.
Rainey
,
D. Y.
, and
Runyan
,
C. W.
,
1992
, “
Newspapers: A Source for Injury Surveillance
,”
Am. J. Public Health
,
82
(
5
), pp. 
745
746
.10.2105/AJPH.82.5.745
4.
Koko
,
T. S.
,
Ayyub
,
B. M.
, and
Gallant
,
K.
,
2016
, “
Simulation of Electric-Current Induced Drowning Accident Scenarios for Boating Safety
,”
J. Risk Uncertainty Eng. Syst. Part B Mech. Eng.
,
3
(
3
), pp.
XXX
XXX
.
5.
Barnett
,
A.
,
1940
, “
Electrical Method for Studying Water Metabolism and Translocation in Body Segments
,”
Proc. Soc. Exp. Biol. Med.
,
44
, pp. 
142
147
. 0037-972710.3181/00379727-44-11383
6.
Thomasett
,
A.
,
1962
, “
Bioelectrical Properties of Tissue Impedance
,”
Lyon Med.
,
207
, pp. 
107
118
. 0024-7790
7.
Hoffer
,
E. C.
,
Meador
,
C. K.
, and
Simpson
,
D. C.
,
1969
, “
Correlation of Whole Body Impedance With Total Body Water Volume
,”
J. Appl. Physiol.
,
27
(
4
), pp. 
531
534
.
8.
Nyboer
,
J.
,
Bango
,
S.
,
Barnett
,
A.
, and
Halsey
,
R. H.
,
1940
, “
Radiocardiograms: The Electrical Impedance Changes of the Heart in Relation to Electrocardiograms and Heart Sounds
,”
J. Clin. Invest.
,
19
, pp. 
963
966
. 0021-9738
9.
Kubicek
,
W. G.
,
1969
, “
Development and Evaluation of an Impedance Cardiographic System to Measure Cardiac Output and Other Cardiac Parameters
,”
National Aeronautics and Space Administration (NASA)
, July 1, 1968 to June 30, 1969, Contract No. NAS 9-4500.
10.
Nyboer
,
J.
,
1970
,
Electrical Impedance Plethysmography
.
2nd ed.
,
Charles C. Thomas
,
Springfield, IL
.
11.
Nyboer
,
J.
,
Liedtke
,
R. J.
,
Reid
,
K. A.
, and
Gessert
,
W. A.
,
1983
, “
Nontraumatic Electrical Detection of Total Body Water and Density in Man
,”
Proceedings of VI ICEBI
,
Zadar
,
Yugoslavia
, pp. 
381
384
.
12.
Geddes
,
L. A.
,
1995
,
Handbook of Electrical Hazards and Accidents
,
CRC Press
,
Boca Raton, FL
, pp. 
165
191
.
13.
Settle
,
R. G.
,
Foster
,
K. R.
,
Epstein
,
B. R.
, and
Mullen
,
J. L.
,
1980
, “
Nutritional Assessment: Whole Body Impedance and Fluid Compartments
,”
Nutr. Cancer
,
2
(
1
), pp. 
72
80
. 0163-558110.1080/01635588009513660
14.
Bridges
,
J. E.
,
1994
, “
New Developments in Electrical Shock Safety
,”
IEEE International Symposium on Electromagnetic Compatibility, Symposium Record Compatibility in the Loop
,
IEEE
,
Chicago, IL
, pp. 
22
25
.
15.
Liedtke
,
R. J.
,
1997
, “
Principles of Bioelectrical Impedance Analysis
,”
RJL Systems
, www.rjlsystems.com.
16.
Gordon
,
L. B.
,
Appelt
,
B. K.
, and
Mitchell
,
J. W.
,
1998
, “
The Complex Dielectric Nature of the Human Body
,”
Conference on Electrical Insulation and Dielectric Phenomena Annual Report
,
IEEE Press
,
Atlanta, GA
, pp. 
577
580
.
17.
Lee
,
C. H.
and
Sakis-Meliopoulos
,
A. P.
,
1999
, “
Comparison of Touch and Step Voltages Between IEEE Std 80 and IEC 479-1
,”
IEE Proc. Gen. Transm. Distrib.
,
146
(
5
), pp. 
593
601
. 0143-7046
18.
Smoot
,
A. W.
, and
Mogan
,
N.
,
1985
, “Methods of Calculating Electrical Body Impedance and Equipment for Measuring Leakage Current,”
Proceedings of the First International Symposium on Electrical Shock Safety Criteria
,
Bridges
,
J. E.
,
Ford
,
G. L.
,
Sherman
,
I. A.
, and
Vainberg
,
M.
, eds.,
Pergamon Press
,
Elmsford, NY
.
19.
Freiberger
,
H.
,
1934
,
The Electrical Resistance of Human Body to Commercial Direct and Alternating Currents
, (Der elektrische Widerstand des menschlichen Korpers gegen technischen Gleich und Wechselstrom.) Z. VDI Bd. 78 (1934) S. 1413,
Verlag von Julius Springer
,
Berlin, Maplewood, NJ
, Item No. 9005.
20.
Dalziel
,
C. E.
, and
Lee
,
W. R.
,
1968
, “
Reevaluation of Lethal Currents
,”
IEEE Trans. Ind. General Appl.
,
IGA-4
(
5
), pp. 
467
677
.
21.
Dalziel
,
C. E.
,
1972
, “
Electric Shock Hazard
,”
IEEE Spectrum
, Feb. 1972,
IEEE
,
New York
, pp. 
41
50
.
22.
Zipse
,
D. W.
,
1999
, “
Electrical Shock Hazard Due to Stray Current
,”
1999 IEEEIndustrial and Commercial Power Systems Technical Conference
,
IEEE
,
Sparks, NV
.
You do not currently have access to this content.