The paper presents a nested multistate methodology for the design of mechanical systems (e.g., a fleet of vehicles) involved in extended campaigns of persistent surveillance. It uses multidisciplinary systems analysis and behavioral-Markov modeling to account for stochastic metrics such as reliability and availability across multiple levels of system performance. The effects of probabilistic failure states at the vehicle level are propagated to mission operations at the campaign level by nesting various layers of Markov and estimated-Markov models. A key attribute is that the designer can then quantify the impact of physical changes in the vehicle, even those physical changes not related to component failure rates, on the predicted chance of maintaining campaign operations above a particular success threshold. The methodology is demonstrated on the design of an unmanned aircraft for an ice surveillance mission requiring omnipresence over Antarctica. Probabilistic results are verified with Monte Carlo analysis and show that even aircraft design parameters not directly related to component failure rates have a significant impact on the number of aircraft lost and missions aborted over the course of the campaign.

References

References
1.
Agte
,
J.
,
Borer
,
N.
, and
de Weck
,
O.
,
2012
, “
Multistate Design Approach to the Analysis of Performance Robustness for a Twin-Engine Aircraft
,”
J. Airc.
,
49
(
3
), pp. 
781
793
.10.2514/1.C031338
2.
Agte
,
J.
,
Borer
,
N.
, and
de Weck
,
O.
,
2012
, “
Design of Long-Endurance Systems With Inherent Robustness to Partial Failures During Operations
,”
J. Mech. Des.
,
134
(
10
), p. 
100903
.10.1115/1.4007574
3.
Agte
,
J.
, and
Borer
,
N.
,
2012
, “
Design of Robust Aircraft for Persistent Observation Campaigns Using Nested Multistate Design
,”
12th AIAA Aviation Technology, Integration, and Operations Conference and 14th AIAA/ISSM
,
Indianapolis, IN
, September,
American Institute of Aeronautics and Astronautics
,
Reston, VA
, AIAA 2012-5452.
4.
Dubbeldam
,
J.
, and
Redig
,
F.
,
2006
, “
Multilayer Markov Chains With Applications to Polymers in Shear Flow
,”
J. Stat. Phys.
,
125
(
1
), pp. 
225
243
.10.1007/s10955-006-9166-z
5.
Jin
,
T.
,
Xing
,
L.
, and
Yu
,
Y.
,
2011
, “
A Hierarchical Markov Reliability Model for Data Storage Systems With Media Self-Recovery
,”
Int. J. Reliab. Qual. Saf. Eng.
,
18
(
1
), pp. 
25
41
.10.1142/S0218539311004019
6.
Kemeny
,
J. G.
, and
Snell
,
J. L.
,
1976
,
Finite Markov Chains
,
D. Van Nostrand Company, Inc.
,
Princeton, NJ
.
7.
Jacobi
,
M. N.
, and
Goernerup
,
O.
,
2007
, “
A Dual Eigenvector Condition for Strong Lumpability of Markov Chains
,” arXiv.org, http://arxiv.org/abs/0710.1986, accessed May 2015.
8.
Abdel-Moneim
,
A. M.
, and
Leysieffer
,
F. W.
,
1982
, “
Weak Lumpability in Finite Markov Chains
,”
J. Appl. Probab.
,
19
(
3
), pp. 
685
691
.10.2307/3213528
9.
Berreto
,
A. M.
, and
Fragoso
,
M. D.
,
2011
, “
Lumping the States of a Finite Markov Chain Through Stochastic Factorization
,”
Proceedings of the 18th IFAC Congress
,
International Federation of Automatic Control
,
Laxenburg, Austria
, pp. 
4206
4210
.
10.
de Sterck
,
H.
,
Manteuffel
,
T. A.
,
McCormick
,
S. F.
,
Nguyen
,
Q.
, and
Ruge
,
J.
,
2008
, “
Multilevel Adaptive Aggregation for Markov Chains, With Application to Web Ranking
,”
SIAM J. Sci. Comput.
,
30
(
5
), pp. 
2235
2262
.10.1137/070685142
11.
Katehakis
,
M. N.
, and
Smit
,
L. C.
,
2012
, “
A Successive Lumping Procedure for a Class of Markov Chains
,”
Probab. Eng. Inf.l Sci.
,
26
(
4
), pp. 
483
508
.10.1017/S0269964812000150
12.
Babcock
IV,
P. S.
,
1996
, “
Developing the Two-Fault Tolerant Attitude Control Function for the Space Station Freedom
,”
20th International Symposium on Space Technology and Science
,
Gifu, Japan
, May,
Kokosi Bunken Insatsusha Company
,
Tokyo, Japan
, Tech. Rep.
13.
Babcock
IV,
P. S.
, and
Zinchuk
,
J. J.
,
1990
, “
Fault-Tolerant Design Optimization: Application to an Underwater Vehicle Navigation System
,”
Proceedings of the (1990) Symposium on Autonomous Underwater Vehicle Technology (IEEE/OES)
,
Institute of Electrical and Electronics Engineers
,
New York
, pp. 
34
43
.
14.
Babcock
IV,
P. S.
,
Rosch
,
G.
, and
Zinchuk
,
J. J.
,
1991
, “
An Automated Environment for Optimizing Fault-Tolerant Systems Designs
,”
Proceedings of the (1991) Annual Reliability and Maintainability Symposium (IEEE)
,
Institute of Electrical and Electronics Engineers
,
New York
, pp. 
360
367
.
15.
Dominguez-Garcia
,
A. D.
,
Kassakian
,
J. G.
,
Schindall
,
J. E.
, and
Zinchuk
,
J. J.
,
2006
, “
On the Use of Behavioral Models for the Integrated Performance and Reliability Evaluation of Fault-Tolerant Avionics Systems
,”
IEEE/AIAA Digital Avionics Systems Conference
,
Portland, Oregon
, October,
Institute of Electrical and Electronics Engineers
,
New York
, Tech. Rep.
16.
Lisnianski
,
A.
, and
Levitin
,
G.
,
2003
,
Multi-State System Reliability
(Series on Quality, Reliability and Engineering Statistics, Vol.
6
),
World Scientific
,
Singapore
.
17.
Bhat
,
U. N.
, and
Miller
,
G. K.
,
2002
,
Elements of Applied Stochastic Processes
,
John Wiley and Sons, Inc.
,
Hoboken, NJ
.
18.
Howard
,
R. A.
,
2007
,
Dynamic Probabilistic Systems: Volume I, Markov Models
,
Dover Publications
,
Mineola, NY
.
19.
NASA
,
2012
, “
IceBridge: An Airborne Mission for Earth’s Polar Ice
,” http://www.nasa.gov/mission_pages/icebridge/, accessed Jun. 2012.
20.
Department of Defense
,
2003
, “
Unmanned Aerial Vehicle Reliability Study
,” http://www.uadrones.net/military/research/ acrobat/0302.pdf, accessed Jun. 2012.
21.
Roskam
,
J.
,
1971
,
Methods for Estimating Stability and Control Derivatives of Conventional Subsonic Airplanes
,
Roskam Aviation and Engineering Corporation
,
Lawrence, KS
.
22.
Grasmeyer
,
J.
,
1998
, “
Stability and Control Derivative Estimation and Engine-Out Analysis
,”
Virginia Tech
, January, VPI-AOE-254.
23.
Moire Inc
.,
2004
, “
Cost and Business Model Analysis for Civilian UAV Missions
,” Prepared for the National Aeronautics and Space Administration, NASA.
24.
Mettas
,
A.
,
2000
, “
Reliability Allocation and Optimization for Complex Systems
,”
Proceedings of the Annual IEEE Reliability and Maintainability Symposium
,
Institute of Electrical and Electronics Engineers
,
New York
.
25.
Nickol
,
C. L.
,
Guynn
,
M. D.
,
Kohout
,
L. L.
, and
Ozoroski
,
T. A.
,
2007
, “
High Altitude Long Endurance UAV Analysis of Alternatives and Technology Requirements Development
,” March, NASA/TP-2007-214861.
26.
Tsach
,
S.
,
Peled
,
A.
,
Penn
,
D.
, and
Touitou
,
D.
,
2004
, “
The CAPECON Program: Civil Applications and Economical Effectivity of Potential UAV Configurations
,”
Proceedings of the 3rd AIAA Unmanned Unlimited Technical Conference, Workshop, and Exhibit
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
You do not currently have access to this content.