This paper studies the stochastic behavior of fatigue crack growth analytically and empirically by employing basic models in fracture mechanics. The research estimates the crack growth rate probabilistically, quantifies the uncertainty of probabilistic models under fatigue loading in automotive parts, and applies the simulations on W319 aluminum alloy, which has vast applications in automotive components’ products. Walker and Forman correlations are used in the paper. The deterministic simulations of these models are verified with afgrow code and validated experimentally with fatigue data of W319 aluminum. Then, the models are treated probabilistically by considering the models’ parameters stochastic. Monte Carlo (MC) simulation is employed to investigate the models under stochastic conditions. The paper is quantifies the propagation of uncertainty with calculating the standard deviations of crack lengths via cycles. The proposed procedure is useful for selecting a proper probabilistic fatigue crack growth model in specific applications and can be used in future fatigue studies not only in the automotive industry but also in other critical fields, to obtain more reliable conclusions.

References

References
1.
Stephens
,
R. I.
,
Fatemi
,
A.
,
Stephens
,
R. R.
, and
Fuchs
,
H. O.
,
2001
,
Metal Fatigue in Engineering
,
2nd ed.
,
John Wiley and Sons
,
Hoboken, NJ
.
2.
Heyes
,
A. M.
,
1998
, “
Automotive Component Failures
,”
Eng. Fail. Anal.
,
5
(
2
), pp.
129
141
. 1350-630710.1016/S1350-6307(98)00010-7
3.
ASM International Handbook Committee
,
1996
,
Fatigue and Fracture
, Vol.
19
,
ASM International
,
Almere, The Netherlands
.
4.
Castillo
,
E.
,
Fernández-Canteli
,
A.
,
Castillo
,
C.
, and
Mozos
,
C. M.
,
2010
, “
A New Probabilistic Model for Crack Propagation Under Fatigue Loads and Its Connection With Wöhler Fields
,”
Int. J. Fatigue
,
32
(
4
), pp.
744
753
.
5.
Paris
,
P. C.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng
,
85
(
4
), pp.
528
534
.10.1115/1.3656900
6.
Beden
,
S. M.
,
Abdullah
,
S.
, and
Ariffin
,
A. K.
,
2009
, “
Review of Fatigue Crack Propagation Models for Metallic Components
,”
Eur. J. Sci. Res.
,
28
(
3
), pp.
364
397
.
7.
Walker
,
K.
,
1970
, “The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum,”
Effects of Environment and Complex Load History on Fatigue Life
,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
1
14
, ASTM STP 462.
8.
Forman
,
R. G.
,
1972
, “
Study of Fatigue Crack Initiation From Flaws Using Fracture Mechanics Theory
,”
Eng. Fract. Mech.
,
4
(
2
), pp.
333
345
. 0013-794410.1016/0013-7944(72)90048-3
9.
James
,
L. A.
, and
Jones
,
D. P.
,
1985
, “Fatigue Crack Correlations for Austenitic Stainless Steels in Air,”
Predictive Capabilities in Environmentally Assisted Cracking
(PVP, Vol.
99
),
ASME
,
New York
, pp.
363
414
.
10.
Bogdanoff
,
J. L.
, and
Kozin
,
F.
,
1985
,
Probabilistic Models of Cumulative Damage
,
Wiley
,
New York
.
11.
Yang
,
J. N.
, and
Manning
,
S. D.
,
1990
, “
Stochastic Crack Growth Analysis Methodologies for Metallic Structure
,”
Eng. Fract. Mech.
,
37
(
5
), pp.
1105
1124
. 0013-794410.1016/0013-7944(90)90032-C
12.
Yang
,
J. N.
, and
Manning
,
S. D.
,
1996
, “
A Simple Second Order Approximation for Stochastic Crack Growth Analysis
,”
Eng. Fract. Mech.
,
53
(
5
), pp.
677
686
. 0013-794410.1016/0013-7944(95)00130-1
13.
Wu
,
W. F.
, and
Ni
,
C. C.
,
2004
, “
Probabilistic Models of Fatigue Crack Propagation and Their Experimental Verification
,”
Probab. Eng. Mech.
,
19
(
3
), pp.
247
257
.10.1016/j.probengmech.2004.02.008
14.
Kocanda
,
D.
, and
Jasztal
,
M.
, “
Probabilistic Predicting the Fatigue Crack Growth Under Variable Amplitude Loading
,”
Int. J. Fatigue
,
39
, pp.
68
74
. 0142-112310.1016/j.ijfatigue.2011.03.011
15.
Hurtado
,
J. L.
,
2006
, “
Airframe Integrity Based on Bayesian Approach
,” Ph.D. thesis,
University of Maryland
, College Park, MD.
16.
Wang
,
X.
,
Rabiei
,
M.
,
Hurtado
,
J.
,
Modarres
,
M.
, and
Hoffman
,
P.
,
2009
, “
A Probabilistic Based Airframe Integrity Management Model
,”
Reliab. Eng. Syst. Saf.
,
94
(
5
), pp.
932
94
.
17.
Sankararaman
,
S.
,
Ling
,
Y.
, and
Mahadevan
,
S.
,
2011
, “
Uncertainty Quantification and Model Validation of Fatigue Crack Growth Prediction
,”
Eng. Fract. Mech.
,
78
(
7
), pp.
1487
1504
.
18.
Harter
,
J. A.
,
1999
, “
AFGROW Users’ Guide and Technical Manual
,”
Air Force Research Laboratory, WPAFB
, Dayton, OH, , http://www.afgrow.net/downloads/ddownload.aspx.
19.
2010
, “
MATLAB version 7.10.0
,”
The Math Works Inc.
,
Natick, MA
.
20.
Zhu
,
X.
,
2007
, “
Ultrasonic Fatigue of E319 Cast Aluminum Alloy in the Long Lifetime Regime
,” Ph.D. thesis,
University of Michigan
, Ann Arbor, MI.
21.
Lados
,
D. A.
, and
Apelian
,
D.
,
2004
, “
Fatigue Crack Growth Characteristics in Cast Al-Si–Mg Alloys Part II: Life Predictions Using Fatigue Crack Growth Data
,”
Mater. Sci. Eng. A
,
385
(
1–2
), pp.
187
199
.
22.
Ray
,
A.
, and
Patankar
,
R.
,
2001
, “
Fatigue Crack Growth Under Variable Loading: Part II—Code Development and Model Validation
,”
Appl. Math. Model.
,
25
(
11
), pp.
995
1013
. 10.1016/S0307-904X(01)00027-0
23.
Shyam
,
A.
,
Allison
,
J. E.
,
Szczepanski
,
C. J.
,
Pollock
,
T. M.
, and
Jones
,
J. W.
,
2007
, “
Small Fatigue Crack Growth in Metallic Materials: A Model and Its Application to Engineering Alloys
,”
Acta Mater.
,
55
(
19
), pp.
6606
6616
.
24.
Modarres
,
M.
,
Kaminskiy
,
M.
, and
Krivtsov
,
V.
,
2010
,
Reliability Engineering and Risk Analysis
,
2nd ed.
,
Taylor and Francis
,
New York
.
You do not currently have access to this content.