Abstract

This study investigates various data representations derived from wind turbine dynamics, utilizing convolutional neural networks (CNNs) as diagnostic tools to identify rotor mass imbalance. The analysis examines three distinct methods for encoding the dataset into 2D images: Gramian angular difference field (GADF), recurrence plot (RP), and Markov transition fields (MTF). To achieve this, simulations of a 1.5 MW three-bladed wind turbine model were conducted using turbsim, fast, and matlabsimulink. These simulations generated rotor speed data under diverse conditions, including varying wind speeds and induced mass imbalances achieved by adjusting blade density in the software. Comparative analyses across nine classifiers demonstrated that the Gramian angular difference field provided the most promising results. The study presents detailed results and simulations, offering a thorough evaluation of the proposed architecture's effectiveness in detecting and diagnosing rotor mass imbalances in wind turbines.

References

1.
Wang
,
J.
,
Liang
,
Y.
,
Zheng
,
Y.
,
Gao
,
R. X.
, and
Zhang
,
F.
,
2020
, “
An Integrated Fault Diagnosis and Prognosis Approach for Predictive Maintenance of Wind Turbine Bearing With Limited Samples
,”
Renewable Energy
,
145
, pp.
642
650
.10.1016/j.renene.2019.06.103
2.
Mishnaevsky
,
L.
, Jr.,
2019
, “
Repair of Wind Turbine Blades: Review of Methods and Related Computational Mechanics Problems
,”
Renewable Energy
,
140
, pp.
828
839
.10.1016/j.renene.2019.03.113
3.
Kaasik
,
M.
, and
Mirme
,
S.
,
2020
, “
Wind: Generating Power and Cooling the Power Lines
,”
Adv. Sci. Res.
,
17
, pp.
105
108
.10.5194/asr-17-105-2020
4.
Cho
,
S.-Y.
,
Choi
,
S.-K.
,
Kim
,
J.-G.
, and
Cho
,
C.-H.
,
2018
, “
An Experimental Study of the Optimal Design Parameters of a Wind Power Tower Used to Improve the Performance of Vertical Axis Wind Turbines
,”
Adv. Mech. Eng.
,
10
(
9
), p.
168781401879954
.10.1177/1687814018799543
5.
Gao
,
Q.
,
Liu
,
W.
,
Tang
,
B.
, and
Li
,
G.
,
2018
, “
A Novel Wind Turbine Fault Diagnosis Method Based on Integral Extension Load Mean Decomposition Multiscale Entropy and Least Squares Support Vector Machine
,”
Renewable Energy
,
116
, pp.
169
175
.10.1016/j.renene.2017.09.061
6.
Cao
,
Z.
,
Xu
,
J.
,
Xiao
,
W.
,
Gao
,
Y.
, and
Wu
,
H.
,
2019
, “
A Novel Method for Detection of Wind Turbine Blade Imbalance Based on Multi-Variable Spectrum Imaging and Convolutional Neural Network
,” 2019 Chinese Control Conference (
CCC
), Guangzhou, China, July 27--30, pp.
4925
4930
.10.23919/ChiCC.2019.8865600
7.
Kumar
,
R.
,
Ismail
,
M.
,
Zhao
,
W.
,
Noori
,
M.
,
Ya
,
Dav
,
A.
,
Chen
,
S.
, and
Singh
,
V.
, et al.,
2021
, “
Damage Detection of Wind Turbine System Based on Signal Processing Approach: A Critical Review
,”
Clean Technol. Environ. Policy
,
23
(
1
), pp.
1
20
.https://doi.org/10.1007/s10098-020-02003-w
8.
Zhang
,
J.
, and
Yang
,
Y.
,
2024
, “
Fault Diagnosis of Nonlinear Analog Circuits Using Generalized Frequency Response Function and LSSVM
,”
PLoS One
,
19
(
12
), p.
e0316151
.10.1371/journal.pone.0316151
9.
Chen
,
M.
,
Guo
,
S.
,
Xing
,
Z.
,
Folly
,
K. A.
,
Liu
,
Y.
, and
Zhang
,
P.
,
2024
, “
Diagnosis of a Rotor Imbalance in a Wind Turbine Based on Support Vector Machine
,”
AIP Adv.
,
14
(
4
), p.
045315
.10.1063/5.0196845
10.
Cho
,
S.
,
Choi
,
M.
,
Gao
,
Z.
, and
Moan
,
T.
,
2021
, “
Fault Detection and Diagnosis of a Blade Pitch System in a Floating Wind Turbine Based on Kalman Filters and Artificial Neural Networks
,”
Renewable Energy
,
169
, pp.
1
13
.10.1016/j.renene.2020.12.116
11.
Chang
,
Y.
,
Chen
,
J.
,
Qu
,
C.
, and
Pan
,
T.
,
2020
, “
Intelligent Fault Diagnosis of Wind Turbines Via a Deep Learning Network Using Parallel Convolution Layers With Multi-Scale Kernels
,”
Renewable Energy
,
153
, pp.
205
213
.10.1016/j.renene.2020.02.004
12.
Lan
,
J.
,
Chen
,
N.
,
Li
,
H.
, and
Wang
,
X.
,
2024
, “
A Review of Fault Diagnosis and Prediction Methods for Wind Turbine Pitch Systems
,”
Int. J. Green Energy
,
21
(
7
), pp.
1613
1640
.10.1080/15435075.2023.2253896
13.
Mahendra Bhatu Gawali
,
S. S. G.
, and
Patil
,
M.
,
2023
, “
Fault Prediction Model in Wind Turbines Using Deep Learning Structure With Enhanced Optimisation Algorithm
,”
J. Control Decis.
,
12
(
3
), pp.
471
488
.10.1080/23307706.2023.2247420
14.
Gong
,
X.
, and
Qiao
,
W.
,
2012
, “
Imbalance Fault Detection of Direct-Drive Wind Turbines Using Generator Current Signals
,”
IEEE Trans. Energy Convers.
,
27
(
2
), pp.
468
476
.10.1109/TEC.2012.2189008
15.
Zeng
,
J.
, and
Song
,
B.
,
2017
, “
Research on Experiment and Numerical Simulation of Ultrasonic Deicing for Wind Turbine Blades
,”
Renewable Energy
,
113
, pp.
706
712
.10.1016/j.renene.2017.06.045
16.
Helbing
,
G.
, and
Ritter
,
M.
,
2018
, “
Deep Learning for Fault Detection in Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
98
, pp.
189
198
.10.1016/j.rser.2018.09.012
17.
Fantino
,
R.
,
Solsona
,
J.
, and
Busada
,
C.
,
2016
, “
Nonlinear Observer-Based Control for PMSG Wind Turbine
,”
Energy
,
113
, pp.
248
257
.10.1016/j.energy.2016.07.039
18.
García
,
Márquez
,
F. P.
,
Tobias
,
A. M.
,
Pinar Pérez
,
J. M.
, and
Papaelias
,
M.
,
2012
, “
Condition Monitoring of Wind Turbines: Techniques and Methods
,”
Renewable Energy
,
46
, pp.
169
178
.10.1016/j.renene.2012.03.003
19.
Jonkman
,
J. B.
,
2006
,
TurbSim User's Guide
, National Renewable Energy Laboratory, Golden, CO.
20.
Jonkman
,
J. M.
,
2003
, “
Modeling of the UAE Wind Turbine for Refinement of FAST
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-500-34755
.https://docs.nrel.gov/docs/fy04osti/34755.pdf
21.
Hübner
,
G.
,
Pinheiro
,
H.
,
de Souza
,
C.
,
Franchi
,
C.
,
da Rosa
,
L.
, and
Dias
,
J.
,
2021
, “
Detection of Mass Imbalance in the Rotor of Wind Turbines Using Support Vector Machine
,”
Renewable Energy
,
170
, pp.
49
59
.10.1016/j.renene.2021.01.080
22.
Zhang
,
H.
,
Huang
,
L.
,
Wu
,
C. Q.
, and
Li
,
Z.
,
2020
, “
An Effective Convolutional Neural Network Based on Smote and Gaussian Mixture Model for Intrusion detection in Imbalanced Dataset
,”
Comput. Networks
,
177
, p.
107315
.10.1016/j.comnet.2020.107315
23.
Li
,
P.
,
Abdel-Aty
,
M.
, and
Yuan
,
J.
,
2020
, “
Real-Time Crash Risk Prediction on Arterials Based on LSTM-CNN
,”
Accid. Anal. Prev.
,
135
, p.
105371
.10.1016/j.aap.2019.105371
24.
Xiong
,
Y.
,
Wang
,
L.
,
Wang
,
Q.
,
Liu
,
S.
, and
Kou
,
B.
,
2022
, “
Improved Convolutional Neural Network With Feature Selection for Imbalanced ECG Multifactor Classification
,”
Measurement
,
189
, p.
110471
.10.1016/j.measurement.2021.110471
25.
Bishop
,
C. M.
,
2006
,
Pattern Recognition and Machine Learning
, Vol.
2
,
Springer Google Scholar
, Cambridge, UK, pp.
1122
1128
.
26.
Indolia
,
S.
,
Goswami
,
A. K.
,
Mishra
,
S. P.
, and
Asopa
,
P.
,
2018
, “
Conceptual Understanding of Convolutional Neural Network—A Deep Learning Approach
,”
Procedia Comput. Sci.
,
132
, pp.
679
688
.10.1016/j.procs.2018.05.069
27.
Wessner
,
R. N.
,
Frozza
,
R.
,
Duarte da Silva Bagatini
,
D.
, and
Molz
,
R. F.
,
2023
, “
Recognition of Weeds in Corn Crops: System With Convolutional Neural Networks
,”
J. Agric. Food Res.
,
14
, p.
100669
.10.1016/j.jafr.2023.100669
28.
Zhou
,
T.-Y.
, and
Huo
,
X.
,
2024
, “
Learning Ability of Interpolating Deep Convolutional Neural Networks
,”
Appl. Comput. Harmonic Anal.
,
68
, p.
101582
.10.1016/j.acha.2023.101582
29.
Zhang
,
Q.
,
Qi
,
Z.
,
Cui
,
P.
,
Xie
,
M.
, and
Din
,
J.
,
2023
, “
Detection of Single-Phase-to-Ground Faults in Distribution Networks Based on Gramian Angular Field and Improved Convolutional Neural Networks
,”
Electr. Power Syst. Res.
,
221
, p.
109501
.10.1016/j.epsr.2023.109501
30.
Wang
,
Q.
,
Pian
,
F.
,
Wang
,
M.
,
Song
,
S.
,
Li
,
Z.
,
Shan
,
P.
, and
Ma
,
Z.
,
2022
, “
Quantitative Analysis of Raman Spectra for Glucose Concentration in Human Blood Using Gramian Angular Field and Convolutional Neural Network
,”
Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.
,
275
, p.
121189
.10.1016/j.saa.2022.121189
31.
Liao
,
Y.
,
Qing
,
X.
,
Wang
,
Y.
, and
Zhang
,
F.
,
2023
, “
Damage Localization for Composite Structure Using Guided Wave Signals With Gramian Angular Field Image Coding and Convolutional Neural Networks
,”
Compos. Struct.
,
312
, p.
116871
.10.1016/j.compstruct.2023.116871
32.
Jiang
,
H.
,
Deng
,
J.
, and
Zhu
,
C.
,
2023
, “
Quantitative Analysis of Aflatoxin B1 in Moldy Peanuts Based on Near-Infrared Spectra With Two-Dimensional Convolutional Neural Network
,”
Infrared Phys. Technol.
,
131
, p.
104672
.10.1016/j.infrared.2023.104672
33.
Xie
,
J.
,
Xu
,
J.
,
Wei
,
Z.
, and
Li
,
X.
,
2023
, “
Fault Isolating and Grading for Li-Ion Battery Packs Based on Pseudo Images and Convolutional Neural Network
,”
Energy
,
263
, p.
125867
.10.1016/j.energy.2022.125867
34.
Wang
,
Z.
, and
Oates
,
T.
,
2015
, “
Imaging Time-Series to Improve Classification and Imputation
,” Twenty-Fourth International Joint Conference on Artificial Intelligence (
IJCAI
), Buenos Aires, Argentina, July 25–31, pp.
3939
3945
.https://www.ijcai.org/Proceedings/15/Papers/553.pdf
35.
Bai
,
R.
,
Meng
,
Z.
,
Xu
,
Q.
, and
Fan
,
F.
,
2023
, “
Fractional Fourier and Time Domain Recurrence Plot Fusion Combining Convolutional Neural Network for Bearing Fault Diagnosis Under Variable Working Conditions
,”
Reliab. Eng. Syst. Saf.
,
232
, p.
109076
.10.1016/j.ress.2022.109076
36.
Jiang
,
G.
,
Jia
,
C.
,
Nie
,
S.
,
Wu
,
X.
,
He
,
Q.
, and
Xie
,
P.
,
2022
, “
Multiview Enhanced Fault Diagnosis for Wind Turbine Gearbox Bearings With Fusion of Vibration and Current Signals
,”
Measurement
,
196
, p.
111159
.10.1016/j.measurement.2022.111159
37.
Pichika
,
S. V. V. S. N.
,
Yadav
,
R.
,
Geetha
,
Rajasekharan
,
S.
,
Praveen
,
H. M.
, and
Inturi
,
V.
,
2022
, “
Optimal Sensor Placement for Identifying Multicomponent Failures in a Wind Turbine Gearbox Using Integrated Condition Monitoring Scheme
,”
Appl. Acoust.
,
187
, p.
108505
.10.1016/j.apacoust.2021.108505
38.
Rahi
,
P. K.
, and
Mehra
,
R.
,
2014
, “
Analysis of Power Spectrum Estimation Using Welch Method for Various Window Techniques
,”
Int. J. Emerging Technol. Eng.
,
2
(
6
), pp.
106
109
.
39.
Sarraf
,
S.
,
2017
, “
EEG-Based Movement Imagery Classification Using Machine Learning Techniques and Welch's Power Spectral Density Estimation
,” Am. Sci. Res. J. Eng., Technol., Sci. (
ASRJETS
),
33
(
1
), pp.
124
145
.https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/3128
40.
Gecgel
,
O.
,
Ekwaro-Osire
,
S.
,
Dias
,
J. P.
,
Serwadda
,
A.
,
Alemayehu
,
F. M.
, and
Nispel
,
A.
,
2019
, “
Gearbox Fault Diagnostics Using Deep Learning With Simulated Data
,”
2019 IEEE International Conference on Prognostics and Health Management
(
ICPHM
), San Francisco, CA, June 17--20, pp.
1
8
.10.1109/ICPHM.2019.8819423
41.
Ali
,
J. B.
, Saidi, L., Harrath, S., Bechhoefer, E., and Benbouzid, M.,
2018
, “
Online Automatic Diagnosis of Wind Turbine Bearings Progressive Degradations Under Real Experimental Conditions Based on Unsupervised Machine Learning
,”
Appl. Acoust.
,
132
, pp.
167
181
.10.1016/j.apacoust.2017.11.021
You do not currently have access to this content.