Graphical Abstract Figure

Input-output relationship of subsystems of the dynamic structure that compose the global FRF.

Graphical Abstract Figure

Input-output relationship of subsystems of the dynamic structure that compose the global FRF.

Close modal

Abstract

Frequency response functions (FRFs) can be calculated from a composite function of other FRFs composition and decomposition problems. Considering that an experimentally measured FRF has an uncertainty in its magnitude and phase, what would be the uncertainty of the magnitude and phase of an FRF calculated from a composite function of experimentally measured FRFs? This work derives analytical expressions for the uncertainty of magnitude and phase of FRFs calculated from functions composed of the basic arithmetic operations involving measured FRFs and their inherent uncertainties. The derivation of the uncertainty values comes from the application of multivariable error analysis to the basic arithmetic operations considering the real and the imaginary parts of the FRFs involved. The resultant uncertainty of the composite FRF is obtained by applying the methodology to every operation in the composite function. Hence, an analytical method is proposed for applying to both composition and decomposition problems. An example of a decomposition problem is presented, and the calculated uncertainty of the magnitude and the phase of the composite FRF showed good agreement with results obtained from Monte Carlo simulation. In addition, it is shown that the blind application of the root-mean-square rule to the composite function written in terms of magnitude is not an appropriate procedure. The proposed methodology is accurate in predicting the uncertainty of composite FRFs.

References

1.
Ewins
,
D. J.
,
1984
,
Modal Testing: Theory and Practice
,
Research Studies Press
,
Letchworth, UK
.
2.
Maia
,
N. M. M.
, and
Silva
,
J. M. M.
,
1997
,
Theoretical and Experimental Modal Analysis
,
Research Studies Press
,
Taunton, UK
.
3.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
2010
,
Random Data: Analysis and Measurement Procedures
,
Wiley
,
Hoboken, NJ
.
4.
Allen
,
M. S.
,
Rixen
,
D.
,
van der Seijs
,
M.
,
Tiso
,
P.
,
Abrahamsson
,
T.
, and
Mayes
,
R. L.
,
2020
,
Substructuring in Engineering Dynamics
,
Springer
, Cham, Switzerland.
5.
Rixen
,
D.
,
2022
, “
Substructuring Concepts and Component Mode Synthesis
,”
Handbook of Experimental Structural Dynamics
,
R.
Allemang
and
P.
Avitabile
, eds.,
Springer
, New York, pp.
833
856
.
6.
Yang
,
C.
, and
Adams
,
D.
,
2010
, “
Predicting Changes in Vibration Behavior With Respect to Multiple Variables Using Empirical Sensitivity Functions
,”
ASME J. Vib. Acoust.
,
132
(
6
), p.
061004
.10.1115/1.4001843
7.
Yang
,
C.
,
Adams
,
D.
,
Yoo
,
S.
, and
Kim
,
H.
,
2004
, “
An Embedded Sensitivity Approach for Diagnosing System-Level Noise and Vibration Problems
,”
J. Sound Vib.
,
269
(
3–5
), pp.
1063
1081
.10.1016/S0022-460X(03)00220-7
8.
Kessler
,
C.
, and
Kim
,
J.
,
2002
, “
Vibration Analysis of Rotors Utilizing Implicit Directional Information of Complex Variable Descriptions
,”
ASME J. Vib. Acoust.
,
124
(
3
), pp.
340
349
.10.1115/1.1467649
9.
Lamas
,
P. B.
, and
Nicoletti
,
R.
,
2024
, “
Wave Analysis of Rotors With Longitudinal Periodicity
,”
J. Sound Vib.
,
571
, p.
118095
.10.1016/j.jsv.2023.118095
10.
Dimond
,
T. W.
,
Sheth
,
P. N.
,
Allaire
,
P. E.
, and
He
,
M.
,
2009
, “
Identification Methods and Test for Tilting Pad and Fixed Geometry Journal Bearing Dynamic Coefficients—A Review
,”
Shock Vib.
,
16
, pp.
13
43
.10.1155/2009/708363
11.
Rouvas
,
C.
, and
Childs
,
D. W.
,
1993
, “
A Parameter Identification Method for the Rotordynamic Coefficients of a High Reynolds Number Hydrostatic Bearing
,”
ASME J. Vib. Acoust.
,
115
(
3
), pp.
264
270
.10.1115/1.2930343
12.
Pinte
,
G.
,
Devos
,
S.
,
Stallaert
,
B.
,
Symens
,
W.
,
Swevers
,
J.
, and
Sas
,
P.
,
2010
, “
A Piezo-Based Bearing for the Active Structural Acoustic Control of Rotating Machinery
,”
J. Sound Vib.
,
329
(
9
), pp.
1235
1253
.10.1016/j.jsv.2009.10.036
13.
Silva
,
H. A. P.
, and
Nicoletti
,
R.
,
2024
, “
Rotor Frequency Response Self-Identification Using an Active Tilting-Pad Bearing
,”
J. Braz. Soc. Mech. Sci. Eng.
,
46
(
8
), p.
478
.10.1007/s40430-024-05051-1
14.
Varela
,
A. C.
, and
Santos
,
I. F.
,
2015
, “
Dynamic Coefficients of a Tilting Pad With Active Lubrication: Comparison Between Theoretical and Experimental Results
,”
ASME J. Tribol.
,
137
(
3
), p.
031704
.10.1115/1.4029943
15.
Fricker
,
T. E.
,
Oakley
,
J. E.
,
Sims
,
N. D.
, and
Worden
,
K.
,
2011
, “
Probabilistic Uncertainty Analysis of an FRF of a Structure Using a Gaussian Process Emulator
,”
Mech. Syst. Signal Process.
,
25
, pp.
2962
2975
.10.1016/j.ymssp.2011.06.013
16.
Lu
,
J.
,
Zhan
,
Z.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2019
, “
Uncertainty Propagation of Frequency Response Functions Using a Multi-Output Gaussian Process Model
,”
Comput. Struct.
,
217
, pp.
1
17
.10.1016/j.compstruc.2019.03.009
17.
Mao
,
Z.
, and
Todd
,
M.
,
2013
, “
Statistical Modeling of Frequency Response Function Estimation for Uncertainty Quantification
,”
Mech. Syst. Signal Process.
,
38
(
2
), pp.
333
345
.10.1016/j.ymssp.2013.01.021
18.
Manan
,
A.
, and
Cooper
,
J. E.
,
2010
, “
Prediction of Uncertain Frequency Response Function Bounds Using Polynomial Chaos Expansion
,”
J. Sound Vib.
,
329
(
16
), pp.
3348
3358
.10.1016/j.jsv.2010.01.008
19.
Guo
,
X.
,
Ma
,
H.
,
Zhang
,
X.
,
Ye
,
Z.
,
Fu
,
Q.
,
Liu
,
Z.
, and
Han
,
Q.
,
2020
, “
Uncertain Frequency Responses of Clamp-Pipeline Systems Using an Interval-Based Method
,”
IEEE Access
,
8
, pp.
29370
29384
.10.1109/ACCESS.2020.2972396
20.
Pintelon
,
R.
,
Rolain
,
Y.
, and
van Moer
,
W.
,
2003
, “
Probability Density Function for Frequency Response Function Measurements Using Periodic Signals
,”
IEEE Trans. Instrum. Meas.
,
52
(
1
), pp.
61
68
.10.1109/TIM.2003.809097
21.
Meggitt
,
J. W. R.
,
2018
, “
On the Treatment of Uncertainty in Experimentally Measured Frequency Response Functions
,”
Metrologia
,
55
, pp.
806
818
.10.1088/1681-7575/aadeeb
22.
Trainotti
,
F.
,
Haeussler
,
M.
, and
Rixen
,
D. J.
,
2020
, “
A Practical Handling of Measurement Uncertainties in Frequency Based Substructuring
,”
Mech. Syst. Signal Process.
,
144
, p.
106846
.10.1016/j.ymssp.2020.106846
23.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainty in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
24.
Clifford
,
A. A.
,
1973
,
Multivariate Error Analysis
,
Wiley
,
New York
.
25.
Silva
,
H. A. P.
, and
Nicoletti
,
R.
,
2023
, “
Rotor Vibration Control Using Tilting-Pad Journal Bearing With Active Pads—Numerical and Experimental Results
,”
J. Sound Vib.
,
546
, p.
117441
.10.1016/j.jsv.2022.117441
26.
Rubinstein
,
R. Y.
,
1981
,
Simulation and the Monte Carlo Method
,
Wiley
,
New York
.
You do not currently have access to this content.