Abstract

Road health monitoring systems aim to obtain the technical indexes of roads and then analyze the usage and the degree of damage of the roads, which can provide an important basis for road construction, maintenance, and management. Road roughness is one of the main technical indexes for road quality evaluation and road health monitoring. A system that contains data obtaining, processing, and result evaluation is developed, and it is implemented as an application to measure and analyze longitudinal road profiles simply and conveniently using the sensors in a mobile phone. The application uses the accelerometer sensor and the gravity sensor to obtain vertical acceleration by a projection method, then denoises through empirical mode decompositions and a Butterworth filter, which has a repeated measurement error of 11%. Different filters were compared and the repeatability, accuracy, robustness, and effectiveness of the system were analyzed. An index is used to evaluated longitudinal road profiles so that the results can be analyzed and viewed interactively in the application and a series of cases are given in this paper.

References

1.
Zhou
,
X. Q.
,
Sun
,
L. J.
, and
Yan
,
L.
,
2005
, “
Research Progress and Trend of Pavement Roughness Indices
,”
J. Highw. Transp. Res. Dev.
,
22
(
10
), pp.
18
22
.https://www.gljtkj.com/CN/Y2005/V22/I10/18
2.
Zeng
,
H.
,
Park
,
H.
,
Smith
,
B.
, and
Parkany
,
E.
,
2018
, “
Feasibility Assessment of a Smartphone-Based Application to Estimate Road Roughness
,”
KSCE J. Civ. Eng.
,
22
(
8
), pp.
3120
3129
.10.1007/s12205-017-1008-9
3.
Slam
,
S.
,
Buttlar
,
W.
,
Aldunate
,
R.
, and
Vavrik
,
W.
,
2014
, “
Measurement of Pavement Roughness Using Android-Based Smartphone Application
,”
Transp. Res. Rec.
,
2457
(
1
), pp.
30
38
.10.3141/2457-04
4.
Douangphachanh
,
V.
, and
Oneyama
,
H.
,
2014
, “
Exploring the Use of Smartphone Accelerometer and Gyroscope to Study on the Estimation of Road Surface Roughness Condition
,” 11th International Conference on Informatics in Control, Automation and Robotics (
ICINCO
), Vienna, Austria, Sept. 1–3, pp.
783
787
.10.5220/0005117407830787
5.
Douangphachanh
,
V.
, and
Oneyama
,
H.
,
2014
, “
Formulation of a Simple Model to Estimate Road Surface Roughness Condition From Android Smartphone Sensors
,” 9th IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing (
ISSNIP
), Singapore, Apr. 21–24, pp.
1
6
.10.1109/ISSNIP.2014.6827694
6.
Aleadelat
,
W.
, and
Ksaibati
,
K.
,
2017
, “
Estimation of Pavement Serviceability Index Through Android-Based Smartphone Application for Local Roads
,”
Transp. Res. Rec.
,
2639
(
1
), pp.
129
135
.10.3141/2639-16
7.
Arora
,
M.
,
Patel
,
M.
, and
Titiksh
,
A.
,
2019
, “
Study of Pavement Unevenness Using Sensor-Based Smartphone Software
,”
Proceedings of Recent Trends in Civil Engineering
, Indore, India, Sept. 26–28, pp.
879
898
.10.1007/978-981-15-5195-6_64
8.
Lukman
,
M.
,
Halim
,
H.
, and
Saing
,
Z.
,
2020
, “
The Flatness Levels of Flexible Road Based on Roadroid Software in Perintis Kemerdekaan Street Makassar
,” 3rd International Conference on Civil and Environmental Engineering (
ICCEE
), Bali, Indonesia, Aug. 29–30, p.
012008
.10.1088/1755-1315/419/1/012008
9.
Vemuri
,
V.
,
Ren
,
Y. H.
,
Gao
,
L.
,
Lu
,
P.
, and
Song
,
L. G.
,
2020
, “
Pavement Condition Index Estimation Using Smartphone Based Accelerometers for City of Houston
,”
Proceedings of Construction Research Congress (CRC) on Construction Research and Innovation to Transform Society
, Tempe, AZ, Mar. 8–10, pp.
522
531
.10.1061/9780784482858.057
10.
Zhang
,
Z.
,
Zhang
,
H. L.
,
Xu
,
S.
, and
Lv
,
W. J.
,
2021
, “
Pavement Roughness Evaluation Method Based on the Theoretical Relationship Between Acceleration Measured by Smartphone and IRI
,”
Int. J. Pavement Eng.
,
23
(
9
), pp.
3082
3098
.10.1080/10298436.2021.1881783
11.
Al-Mansour
,
A. I.
, and
Al-Qaili
,
A. H.
,
2022
, “
An Application of Android Sensors and Google Earth in Pavement Maintenance Management Systems for Developing Countries
,”
Appl. Sci.-Basel
,
12
(
11
), p.
5636
.10.3390/app12115636
12.
Zhang
,
Z.
, and
Lv
,
W. J.
,
2021
, “
Research on Theoretical Evaluation Method of Road Roughness Based on Smartphone and Whole Vehicle Model
,” 6th International Conference on Electromechanical Control Technology and Transportation (
ICECTT
), Chongqing, China, May 14–16, p.
1208119
.10.1117/12.2623860
13.
Yamamoto
,
K.
,
Shin
,
R.
,
Sakuma
,
K.
,
Ono
,
M.
, and
Okada
,
Y.
,
2023
, “
Practical Application of Drive-By Monitoring Technology to Road Roughness Estimation Using Buses in Service
,”
Sensors
,
23
(
4
), p.
2004
.10.3390/s23042004
14.
Hossain
,
M.
,
Tutumluer
,
E.
,
Nikita
., and
Grimm
,
C.
,
2019
, “
Evaluation of Android-Based Cell Phone Applications to Measure International Roughness Index of Rural Roads
,” Proceedings of ASCE International Conference on Transportation and Development (
ICTD
), Alexandria, VA, June 9–12, pp.
359
370
.10.1061/9780784482575.034
15.
Zhong
,
H.
, and
Yang
,
M.
,
2016
, “
Effect of Prestress on Bridge-Vehicle Interactions
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B-Mech. Eng.
,
4
(
3
), p.
31003
.10.1115/IMECE2015-51757
16.
Liu
,
Q. H.
,
Zhang
,
W. M.
, and
Xia
,
P. F.
,
2016
, “
Design of Road Roughness Collecting System Based on Acceleration Sensor
,”
J. Jiangsu Univ. Sci. Technol.
,
30
(
4
), pp.
362
369
.https://jkdzk.cbpt.cnki.net/WKC/WebPublication/wkTextContent.aspx?colType=4&yt=2016&tp=gklb
17.
Zhang
,
Z. W.
,
Chen
,
T.
,
Wang
,
W. Z.
,
Zhao
,
Q.
, and
Li
,
J.
,
2020
, “
Two Descriptions of International Roughness Index of Road and Their Application
,”
J. Automot. Eng.
,
42
(
8
), pp.
1097
1102
.https://www.qichegongcheng.com/CN/10.19562/j.chinasae.qcgc.2020.08.014
18.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2021
, “
Damage Classification of Composites Based on Analysis of Lamb Wave Signals Using Machine Learning
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B-Mech. Eng.
,
7
(
1
), p.
011002
.10.1115/1.4048867
19.
Yuce
,
C.
,
Gecgel
,
O.
,
Dogan
,
O.
,
Dabetwar
,
S.
,
Yanik
,
Y.
,
Kalay
,
O. C.
,
Karpat
,
E.
,
Karpat
,
F.
, and
Ekwaro-Osire
,
S.
,
2022
, “
Prognostics and Health Management of Wind Energy Infrastructure Systems
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B-Mech. Eng.
,
8
(
2
), p.
020801
.10.1115/1.4053422
20.
Movsessian
,
A.
,
Cava
,
D. G.
, and
Tcherniak
,
D.
,
2022
, “
Interpretable Machine Learning in Damage Detection Using Shapley Additive Explanations
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B-Mech. Eng.
,
8
(
2
), p.
021101
.10.1115/1.4053304
21.
Google for Developers
,
2023
, “
Meet Android Studio
,” Google, Online, accessed Nov. 2023, https://developer.android.google.cn/studio
22.
Zang
,
K.
,
Shen
,
J.
,
Huang
,
H.
,
Wan
,
M.
, and
Shi
,
J.
,
2018
, “
Assessing and Mapping of Road Surface Roughness Based on GPS and Accelerometer Sensors on Bicycle-Mounted Smartphones
,”
Sensors
,
18
(
3
), p.
914
.10.3390/s18030914
23.
Google for Developers
,
2019
, “
Sensors Overview
,” Google, Online, accessed Nov. 2023, https://developer.android.google.cn/guide/topics/sensors/sensors_overview?hl=en
24.
Open Platform of Amap
,
2021
, “
Overview
,” Google, Online, accessed Nov. 2023, https://lbs.amap.com/api/android-sdk/summary
25.
Dai
,
L. W.
,
Han
,
S. W.
,
Wang
,
J. L.
, and
Rizos
,
C.
,
2003
, “
Comparison of Interpolation Algorithms in Network-Based GPS Techniques
,”
Navig. J. Inst. Navig.
,
50
(
4
), pp.
277
293
.10.1002/j.2161-4296.2003.tb00335.x
26.
Douangphachanh
,
V.
, and
Oneyama
,
H.
,
2013
, “
A Study on the Use of Smartphones for Road Roughness Condition Estimation
,”
J. East. Asia Soc. Transp. Stud.
,
10
(
1
), pp.
1551
1564
.10.11175/easts.10.1551
27.
Butterworth
,
S.
,
1930
, “
On the Theory of Filter Amplifiers
,”
Wireless Engineer
,
7
(
1
), pp.
536
541
.https://www.changpuak.ch/electronics/downloads/On_the_Theory_of_Filter_Amplifiers.pdf
28.
Li
,
Y.
,
2021
, “
Research on Pavement Roughness Estimation Method Based on Kalman Filter Algorithm
,” MS thesis,
Harbin Institute of Technology
,
Harbin, China
.
29.
Oppenheim
,
A. V.
,
Willsky
,
A. S.
, and
Nawab
,
H.
,
1997
,
Signals and Systems
, 2nd ed.,
Prentice Hall International
,
Englewood Cliffs
, pp.
670
673
.
30.
Huang
,
X. P.
, and
Wang
,
Y.
,
2022
,
Principle and Application of Kalman Filtering: MATLAB Simulation
, 2nd ed.,
Public House of Electronics Industry
,
Beijing
, pp.
2
7
.
31.
Kovvali
,
N.
,
Banavar
,
M.
, and
Spanias
,
A.
,
2014
,
An Introduction to Kalman Filtering With MATLAB Examples
, 1st ed.,
Springer International Publishing
,
Cham
, pp.
1
3
.
32.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N. C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. London, Ser. A
,
454
(
1971
), pp.
903
995
.10.1098/rspa.1998.0193
33.
Desavale
,
R. G.
,
Jadhav
,
P. M.
, and
Dharwadkar
,
N. V.
,
2021
, “
Dynamic Response Analysis of Gearbox to Improve Fault Detection Using Empirical Mode Decomposition and Artificial Neural Network Techniques
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B-Mech. Eng.
,
7
(
3
), p.
031007
.10.1115/1.4051344
34.
Moler
,
C. B.
,
2004
, “
Numerical Computing With MATLAB
,” Mathworks, Natick, MA, accessed Nov. 2023, pp.
99
100
, http://www.mathworks.com/moler
35.
Gillespie
,
T.
,
Paterson
,
W.
, and
Sayers
,
M. W.
,
1986
, “
Guidelines for the Conduct and Calibration of Road Roughness Measurements
,” World Bank Technical Paper, http://documents.worldbank.org/curated/en/851131468160775725/Guidelines-for-conducting-and-calibrating-road-roughness-measurements
36.
Mahlberg
,
J. A.
,
Li
,
H.
,
Zachrisson
,
B.
,
Leslie
,
D. K.
, and
Bullock
,
D. M.
,
2022
, “
Pavement Quality Evaluation Using Connected Vehicle Data
,”
Sensors
,
22
(
23
), p.
9109
.10.3390/s22239109
37.
Arofah
,
M.
, and
Prahara
,
E.
,
2021
, “
Evaluate the Accuracy of Vehicle Type on Road Surface Condition Survey Using Roadroid Application
,” Proceedings of International Conference on Biospheric Harmony Advanced Research (
ICOBAR 2020
), Jakarta, Indonesia, June 23–24, p.
012039
.10.1088/1755-1315/729/1/012039
38.
Cafiso
,
S.
,
Di Graziano
,
A.
,
Marchetta
,
V.
, and
Pappalardo
,
G.
,
2022
, “
Urban Road Pavements Monitoring and Assessment Using Bike and E-Scooter as Probe Vehicles
,”
Case Stud. Constr. Mater.
,
16
(
1
), p.
E00889
.10.1016/j.cscm.2022.e00889
39.
Du
,
Y. C.
,
Liu
,
C. L.
,
Wu
,
D. F.
, and
Jiang
,
S. C.
,
2014
, “
Measurement of International Roughness Index by Using Z -Axis Accelerometers and GPS
,”
Math. Probl. Eng.
,
2014
, pp.
1
10
.10.1155/2014/928980
40.
Pawar
,
P. R.
,
Mathew
,
A. T.
, and
Saraf
,
M. R.
,
2018
, “
IRI (International Roughness Index): An Indicator of Vehicle Response
,” Proceedings of International Conference on Materials Manufacturing and Modelling (
ICMMM
), Vellore, India, Mar. 9–11, pp.
11738
11750
.10.1016/j.matpr.2018.02.143
41.
Wan
,
M.
,
2017
, “
Research of Road Surface Roughness Measurement and Visualization Based on Bicycle Carried Smart Phone Sensors
,” MS thesis,
Nanjing Normal University
, Nanjing, China.
42.
Hanson
,
T.
,
Cameron
,
C.
, and
Hildebrand
,
E.
,
2014
, “
Evaluation of Low-Cost Consumer-Level Mobile Phone Technology for Measuring International Roughness Index (IRI) Values
,”
Can. J. Civ. Eng.
,
41
(
9
), pp.
819
827
.10.1139/cjce-2014-0183
43.
Wang
,
J. F.
,
Song
,
H. X.
, and
Ma
,
R. G.
,
2012
, “
Influencing Factors of International Roughness Index
,”
J. Chongqing Jiaotong Univ. (Natural Sci.)
,
31
(
6
), pp.
1145
1148
.
44.
Huang
,
L. K.
, and
Sheng
,
C. H.
,
2006
, “
Relationship Between Vehicle Dynamic Amplification Factor and Pavement Roughness
,”
J. Highw. Transp. Res. Dev.
,
03
(
1
), pp.
27
30
.http://www.gljtkj.com/CN/Y2006/V23/I3/27
45.
Achmadi
,
F.
,
Suprapto
,
M.
, and
Setyawan
,
A.
,
2017
, “
The Priority of Road Rehabilitation in Karanganyar Regency Using IRI Estimation From Roadroid
,” Proceedings of 1st International Conference on Advanced Materials for Better Future (
ICAMBF
), Surakarta, Indonesia, Oct. 3–4, p.
012033
.10.1088/1757-899X/176/1/012033
You do not currently have access to this content.