Abstract

This work proposes a method using a long short-term memory neural network as a diagnostic tool to detect wind turbine rotor mass imbalance. The method uses the synthetic minority oversampling technique for data augmentation in an unbalanced dataset. For this purpose, a 1.5 MW three-bladed wind turbine model was simulated at Turbsim, FAST, and Matlab Simulink to generate rotor speed data for different scenarios, simulating different wind speeds and creating a mass imbalance by changing the density of the blades in the software. Features extraction and power spectral density were also used to improve the Neural Network results. The results were compared to nine different classifiers with four different combinations of datasets and demonstrated that the technique is promising for mass imbalance detection.

References

1.
Chen
,
X.
,
Zhang
,
X.
,
Dong
,
M.
,
Huang
,
L.
,
Guo
,
Y.
, and
He
,
S.
,
2021
, “
Deep Learning-Based Prediction of Wind Power for Multi-Turbines in a Wind Farm
,”
Front. Energy Res.
,
9
, p.
403
.10.3389/fenrg.2021.723775
2.
Kaasik
,
M.
, and
Mirme
,
S.
,
2020
, “
Wind: Generating Power and Cooling the Power Lines
,”
Adv. Sci. Res.
,
17
, pp.
105
108
.10.5194/asr-17-105-2020
3.
Cho
,
S.-Y.
,
Choi
,
S.-K.
,
Kim
,
J.-G.
, and
Cho
,
C. H.
,
2018
, “
An Experimental Study of the Optimal Design Parameters of a Wind Power Tower Used to Improve the Performance of Vertical Axis Wind Turbines
,”
Adv. Mech. Eng.
,
10
(
9
), p.
168781401879954
.10.1177/1687814018799543
4.
Verma
,
A. S.
,
Yan
,
J.
,
Hu
,
W.
,
Jiang
,
Z.
,
Shi
,
W.
, and
Teuwen
,
J. J.
,
2023
, “
A Review of Impact Loads on Composite Wind Turbine Blades: Impact Threats and Classification
,”
Renewable Sustainable Energy Rev.
,
178
, p.
113261
.10.1016/j.rser.2023.113261
5.
Wang
,
J.
,
Liang
,
Y.
,
Zheng
,
Y.
,
Gao
,
R. X.
, and
Zhang
,
F.
,
2020
, “
An Integrated Fault Diagnosis and Prognosis Approach for Predictive Maintenance of Wind Turbine Bearing With Limited Samples
,”
Renewable Energy
,
145
, pp.
642
650
.10.1016/j.renene.2019.06.103
6.
Mishnaevsky Jr
,
L.
,
2019
, “
Repair of Wind Turbine Blades: Review of Methods and Related Computational Mechanics Problems
,”
Renewable Energy
,
140
, pp.
828
839
.10.1016/j.renene.2019.03.113
7.
Inturi
,
V.
,
Shreyas
,
N.
,
Chetti
,
K.
, and
Sabareesh
,
G. R.
,
2021
, “
Comprehensive Fault Diagnostics of Wind Turbine Gearbox Through Adaptive Condition Monitoring Scheme
,”
Appl. Acoust.
,
174
, p.
107738
.10.1016/j.apacoust.2020.107738
8.
Xing
,
Z.
,
Chen
,
M.
,
Cui
,
J.
,
Chen
,
Z.
, and
Xu
,
J.
,
2022
, “
Detection of Magnitude and Position of Rotor Aerodynamic Imbalance of Wind Turbines Using Convolutional Neural Network
,”
Renewable Energy
,
197
, pp.
1020
1033
.10.1016/j.renene.2022.07.152
9.
Enríquez Zárate
,
J.
,
Gómez López
,
M. D. L. Á.
,
Carmona Troyo
,
J. A.
, and
Trujillo
,
L.
,
2022
, “
Analysis and Detection of Erosion in Wind Turbine Blades
,”
Math. Comput. Appl.
,
27
(
1
), p.
5
.10.3390/mca27010005
10.
Hübner
,
G. R.
,
Pinheiro
,
H.
,
de Souza
,
C. E.
,
Franchi
,
C. M.
,
da Rosa
,
L. D.
, and
Dias
,
J. P.
,
2021
, “
Detection of Mass Imbalance in the Rotor of Wind Turbines Using Support Vector Machine
,”
Renewable Energy
,
170
, pp.
49
59
.10.1016/j.renene.2021.01.080
11.
Gao
,
Q. W.
,
Liu
,
W. Y.
,
Tang
,
B. P.
, and
Li
,
G. L.
,
2018
, “
A Novel Wind Turbine Fault Diagnosis Method Based on Integral Extension Load Mean Decomposition Multi-Scale Entropy and Least Squares Support Vector Machine
,”
Renewable Energy
,
116
, pp.
169
175
.10.1016/j.renene.2017.09.061
12.
Cao
,
Z.
,
Xu
,
J.
,
Xiao
,
W.
,
Gao
,
Y.
, and
Wu
,
H.
,
2019
, “
A Novel Method for Detection of Wind Turbine Blade Imbalance Based on Multi-Variable Spectrum Imaging and Convolutional Neural Network
,” Proceedings of the 2019 Chinese Control Conference (
CCC
), Guangzhou, China, July 27–30, pp.
4925
4930
.10.23919/ChiCC.2019.8865600
13.
Kumar
,
R.
,
Ismail
,
M.
,
Zhao
,
W.
,
Noori
,
M.
,
Yadav
,
A.
R.,
Chen
,
S.
,
Singh
,
V.
,
Altabey
,
W.
A.,
Silik
,
A.
I.,
Kumar
,
G.
,
Kumar
,
J.
, and
Balodi
,
A.
,
2021
, “
Damage Detection of Wind Turbine System Based on Signal Processing Approach: A Critical Review
,”
Clean Technol. Environ. Policy
,
23
(
2
), pp.
561
580
.10.1007/s10098-020-02003-w
14.
Cho
,
S.
,
Choi
,
M.
,
Gao
,
Z.
, and
Moan
,
T.
,
2021
, “
Fault Detection and Diagnosis of a Blade Pitch System in a Floating Wind Turbine Based on Kalman Filters and Artificial Neural Networks
,”
Renewable Energy
,
169
, pp.
1
13
.10.1016/j.renene.2020.12.116
15.
Chang
,
Y.
,
Chen
,
J.
,
Qu
,
C.
, and
Pan
,
T.
,
2020
, “
Intelligent Fault Diagnosis of Wind Turbines Via a Deep Learning Network Using Parallel Convolution Layers With Multi-Scale Kernels
,”
Renewable Energy
,
153
, pp.
205
213
.10.1016/j.renene.2020.02.004
16.
Lindemann
,
B.
,
Müller
,
T.
,
Vietz
,
H.
,
Jazdi
,
N.
, and
Weyrich
,
M.
,
2021
, “
A Survey on Long Short-Term Memory Networks for Time Series Prediction
,”
Procedia CIRP
,
99
, pp.
650
655
.10.1016/j.procir.2021.03.088
17.
Yan
,
J.
,
Zhang
,
Y.
,
Su
,
Q.
,
Li
,
R.
,
Li
,
H.
,
Lu
,
Z.
,
Lu
,
H.
, and
Lu
,
Q.
,
2023
, “
Time Series Prediction Based on LSTM Neural Network for Top Tension Response of Umbilical Cables
,”
Mar. Struct.
,
91
, p.
103448
.10.1016/j.marstruc.2023.103448
18.
Zhang
,
Q.
,
Ma
,
Y.
,
Li
,
G.
,
Ma
,
J.
, and
Ding
,
J.
,
2020
, “
Short-Term Load Forecasting Based on Frequency Domain Decomposition and Deep Learning
,”
Math. Probl. Eng.
,
2020
, pp.
1
9
.10.1155/2020/7240320
19.
Gong
,
X.
, and
Qiao
,
W.
,
2012
, “
Imbalance Fault Detection of Direct-Drive Wind Turbines Using Generator Current Signals
,”
IEEE Trans. Energy Convers.
,
27
(
2
), pp.
468
476
.10.1109/TEC.2012.2189008
20.
Zeng
,
J.
, and
Song
,
B.
,
2017
, “
Research on Experiment and Numerical Simulation of Ultrasonic De-Icing for Wind Turbine Blades
,”
Renewable Energy
,
113
, pp.
706
712
.10.1016/j.renene.2017.06.045
21.
Helbing
,
G.
, and
Ritter
,
M.
,
2018
, “
Deep Learning for Fault Detection in Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
98
, pp.
189
198
.10.1016/j.rser.2018.09.012
22.
Fantino
,
R.
,
Solsona
,
J.
, and
Busada
,
C.
,
2016
, “
Nonlinear Observer-Based Control for PMSG Wind Turbine
,”
Energy
,
113
, pp.
248
257
.10.1016/j.energy.2016.07.039
23.
García Márquez
,
F. P.
,
Tobias
,
A. M.
,
Pinar Pérez
,
J. M. P.
, and
Papaelias
,
M.
,
2012
, “
Condition Monitoring of Wind Turbines: Techniques and Methods
,”
Renewable Energy
,
46
, pp.
169
178
.10.1016/j.renene.2012.03.003
24.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
,
Dias
,
J. P.
,
Hübner
,
G. R.
,
Franchi
,
C. M.
, and
Pinheiro
,
H.
,
2023
, “
Mass Imbalance Diagnostics in Wind Turbines Using Deep Learning With Data Augmentation
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
9
(
1
), p.
011201
.10.1115/1.4054420
25.
Jonkman
,
J. B.
,
2006
, “
TurbSim User's Guide
,” National Renewable Energy Laboratory, Golden, CO.
26.
Jonkman
,
J. M.
,
2003
, “
Modeling of the UAE Wind Turbine for Refinement of FAST
,” National Renewable Energy Laboratory, Golden, CO.
27.
Rahi
,
P. K.
, and
Mehra
,
R.
,
2014
, “
Analysis of Power Spectrum Estimation Using Welch Method for Various Window Techniques
,”
Int. J. Emerging Technol. Eng.
,
2
(
6
), pp.
106
109
.
28.
Sarraf
,
S.
,
2017
, “
EEG-Based Movement Imagery Classification Using Machine Learning Techniques and Welch's Power Spectral Density Estimation
,”
Am. Sci. Res. J. Eng., Technol., Sci. (ASRJETS)
,
33
(
1
), pp.
124
145
.
29.
Chawla
,
N. V.
,
Bowyer
,
K. W.
,
Hall
,
L. O.
, and
Kegelmeyer
,
W. P.
,
2002
, “
Smote Synthetic Minority Oversampling Technique
,”
J. Artif. Intell. Res.
,
16
, pp.
321
357
.10.1613/jair.953
30.
Zhang
,
H.
,
Huang
,
L.
,
Wu
,
C. Q.
, and
Li
,
Z.
,
2020
, “
An Effective Convolutional Neural Network Based on SMOTE and Gaussian Mixture Model for Intrusion Detection in Imbalanced Dataset
,”
Comput. Networks
,
177
, p.
107315
.10.1016/j.comnet.2020.107315
31.
Li
,
P.
,
Abdel-Aty
,
M.
, and
Yuan
,
J.
,
2020
, “
Real-Time Crash Risk Prediction on Arterials Based on LSTM-CNN
,”
Accid. Anal. Prev.
,
135
, p.
105371
.10.1016/j.aap.2019.105371
32.
Xiong
,
Y.
,
Wang
,
L.
,
Wang
,
Q.
,
Liu
,
S.
, and
Kou
,
B.
,
2022
, “
Improved Convolutional Neural Network With Feature Selection for Imbalanced ECG Multi-Factor Classification
,”
Measurement
,
189
, p.
110471
.10.1016/j.measurement.2021.110471
33.
Gupta
,
N.
,
Jindal
,
V.
, and
Bedi
,
P.
,
2021
, “
LIO-IDS: Handling Class Imbalance Using LSTM and Improved One-vs-One Technique in Intrusion Detection System
,”
Comput. Networks
,
192
, p.
108076
.10.1016/j.comnet.2021.108076
34.
Sahu
,
S. K.
,
Mohapatra
,
D. P.
,
Rout
,
J. K.
,
Sahoo
,
K. S.
,
Pham
,
Q.-V.
, and
Dao
,
N.-N.
,
2022
, “
A LSTM-FCNN Based Multi-Class Intrusion Detection Using Scalable Framework
,”
Comput. Electr. Eng.
,
99
, p.
107720
.10.1016/j.compeleceng.2022.107720
35.
Zhao
,
L.
,
Mo
,
C.
,
Ma
,
J.
,
Chen
,
Z.
, and
Yao
,
C.
,
2022
, “
LSTM-MFCN: A Time Series Classifier Based on Multi-Scale Spatial–Temporal Features
,”
Comput. Commun.
,
182
, pp.
52
59
.10.1016/j.comcom.2021.10.036
36.
Zhu
,
Y.
,
Zhu
,
C.
,
Tan
,
J.
,
Tan
,
Y.
, and
Rao
,
L.
,
2022
, “
Anomaly Detection and Condition Monitoring of Wind Turbine Gearbox Based on LSTM-FS and Transfer Learning
,”
Renewable Energy
,
189
, pp.
90
103
.10.1016/j.renene.2022.02.061
37.
Correa-Jullian
,
C.
,
Cardemil
,
J. M.
,
López Droguett
,
E.
, and
Behzad
,
M.
,
2020
, “
Assessment of Deep Learning Techniques for Prognosis of Solar Thermal Systems
,”
Renewable Energy
,
145
, pp.
2178
2191
.10.1016/j.renene.2019.07.100
You do not currently have access to this content.