Abstract

An approximate efficient stochastic dynamics technique is developed for determining response statistics of linear systems with frequency-dependent parameters, which are used for modeling wave propagation through rigid porous media subject to stochastic excitation. This is done in conjunction with a filter approximation of the system frequency response function. The technique exhibits the following advantages compared to alternative solution treatments in the literature. First, relying on an input–output relationship in the frequency domain, the response power spectrum matrix is integrated analytically for determining the stationary response covariance matrix, at zero computational cost. Second, the proposed filter approximation facilitates a state-variable formulation of the governing stochastic differential equations in the time domain. This yields a coupled system of deterministic differential equations to be solved numerically for the response covariance matrix. Thus, the nonstationary (transient) response covariance can be computed in the time domain at a relatively low computational cost. Various numerical examples are considered for demonstrating the accuracy and computational efficiency of the herein developed technique. Comparisons with pertinent Monte Carlo simulation (MCS) data are included as well.

References

1.
Allard
,
J.
, and
Atalla
,
N.
,
2009
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
,
Wiley
,
Chichester, UK
.
2.
Duval
,
A.
,
2021
, “
Industrial Applications III: Acoustic Package Optimization Methods in the Automotive Industry
,”
Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media. Topics in Applied Physics
, N. Jiménez, O. Umnova, and J. P. Groby, eds., Vol. 143, Springer, Cham, Switzerland.10.1007/978-3-030-84300-7_11
3.
Santoni
,
A.
,
Bonfiglio
,
P.
,
Fausti
,
P.
, and
Pompoli
,
F.
,
2021
, “
Computation of the Alpha Cabin Sound Absorption Coefficient by Using the Finite Transfer Matrix Method (Ftmm): Inter-Laboratory Test on Porous Media
,”
ASME J. Vib. Acoust.
,
143
(
2
), p.
021012
.10.1115/1.4048395
4.
Wang
,
Y.-F.
,
Liang
,
J.-W.
,
Chen
,
A.-L.
,
Wang
,
Y.-S.
, and
Laude
,
V.
,
2019
, “
Wave Propagation in One-Dimensional Fluid-Saturated Porous Metamaterials
,”
Phys. Rev. B
,
99
(
13
), p.
134304
.10.1103/PhysRevB.99.134304
5.
Matthews
,
M. C.
,
Hope
,
V. S.
, and
Clayton
,
C. R. I.
, and
Rayleigh
1996
, “
The Use of Surface Waves in the Determination of Ground Stiffness Profiles
,”
Proc. Inst. Civ. Eng.-Geotech. Eng.
,
119
(
2
), pp.
84
95
.10.1680/igeng.1996.28168
6.
Sheng
,
X.
,
Jones
,
C. J. C.
, and
Thompson
,
D. J.
,
2004
, “
A Theoretical Study on the Influence of the Track on Train-Induced Ground Vibration
,”
J. Sound Vib.
,
272
(
3–5
), pp.
909
936
.10.1016/S0022-460X(03)00781-8
7.
Hodaei
,
M.
,
Rabbani
,
V.
, and
Maghoul
,
P.
,
2020
, “
Transient Acoustic Wave Propagation in Bone-Like Porous Materials Using the Theory of Poroelasticity and Fractional Derivative: A Sensitivity Analysis
,”
Acta Mech.
,
231
(
1
), pp.
179
203
.10.1007/s00707-019-02513-9
8.
Goodarzi Ardakani
,
V.
,
Gambaruto
,
A. M.
,
Silva
,
G.
, and
Pereira
,
R.
,
2022
, “
A Porosity Model for Medical Image Segmentation of Vessels
,”
Int. J. Numer. Methods Biomed. Eng.
,
38
(
4
), p.
e3580
.10.1002/cnm.3580
9.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. ii. higher Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
179
191
.10.1121/1.1908241
10.
JCAL Johnson-Champoux-Allard Lafarge
,
2021
, “
Sound Propagation Analysis in Porous Fibrous Acoustic Absorbers Using Johnson-Champoux-Allard Lafarge (Jcal) Model & Delaney Bazley Model
,”
Int. J. Appl. Eng. Res.
,
16
(
5
), pp.
406
409
.https://www.ripublication.com/ijaer21/ijaerv16n5_11.pdf
11.
Brouard
,
B.
,
Lafarge
,
D.
,
Allard
,
J.-F.
, and
Tamura
,
M.
,
1996
, “
Measurement and Prediction of the Reflection Coefficient of Porous Layers at Oblique Incidence and for Inhomogeneous Waves
,”
J. Acoust. Soc. Am.
,
99
(
1
), pp.
100
107
.10.1121/1.415222
12.
Horoshenkov
,
K. V.
,
Hurrell
,
A.
, and
Groby
,
J.-P.
,
2019
, “
A Three-Parameter Analytical Model for the Acoustical Properties of Porous Media
,”
J. Acoust. Soc. Am.
,
145
(
4
), pp.
2512
2517
.10.1121/1.5098778
13.
Deymier
,
P. A.
,
2013
,
Acoustic Metamaterials and Phononic Crystals
, Vol.
173
,
Springer Science & Business Media
,
Berlin
.
14.
Bécot
,
F.-X.
, and
Jaouen
,
L.
,
2013
, “
An Alternative Biot's Formulation for Dissipative Porous Media With Skeleton Deformation
,”
J. Acoust. Soc. Am.
,
134
(
6
), pp.
4801
4807
.10.1121/1.4826175
15.
Sreekumar
,
A.
,
Triantafyllou
,
S. P.
,
Chevillotte
,
F.
, and
Bécot
,
F.-X.
,
2023
, “
Resolving Vibro-Acoustics in Poroelastic Media Via a Multiscale Virtual Element Method
,”
Int. J. Numer. Methods Eng.
,
124
(
7
), pp.
1510
1546
.10.1002/nme.7173
16.
Spanos
,
P. D.
, and
Zeldin
,
B. A.
,
1997
, “
Random Vibration of Systems With Frequency-Dependent Parameters or Fractional Derivatives
,”
J. Eng. Mech.
,
123
(
3
), pp.
290
292
.10.1061/(ASCE)0733-9399(1997)123:3(290)
17.
Fellah
,
Z. E. A.
, and
Depollier
,
C.
,
2000
, “
Transient Acoustic Wave Propagation in Rigid Porous Media: A Time-Domain Approach
,”
J. Acoust. Soc. Am.
,
107
(
2
), pp.
683
688
.10.1121/1.428250
18.
Atalla
,
N.
,
Panneton
,
R.
, and
Debergue
,
P.
,
1998
, “
A Mixed Displacement-Pressure Formulation for Poroelastic Materials
,”
J. Acoust. Soc. Am.
,
104
(
3
), pp.
1444
1452
.10.1121/1.424355
19.
Sreekumar
,
A.
,
Triantafyllou
,
S. P.
, and
Chevillotte
,
F.
,
2022
, “
Virtual Elements for Sound Propagation in Complex Poroelastic Media
,”
Comput. Mech.
,
69
(
1
), pp.
347
382
.10.1007/s00466-021-02078-2
20.
Zhou
,
F.-X.
,
Ma
,
Q.
, and
Mi
,
H.-Z.
,
2015
, “
Random Vibration of Fluid-Saturated Porous Elastic Beam
,”
Chin. Vib. Eng. Soc.
,
22
, pp.
206
209
.10.13465/j.cnki.jvs.2015.22.036
21.
Maxit
,
L.
,
2016
, “
Simulation of the Pressure Field Beneath a Turbulent Boundary Layer Using Realizations of Uncorrelated Wall Plane Waves
,”
J. Acoust. Soc. Am.
,
140
(
2
), pp.
1268
1285
.10.1121/1.4960516
22.
Miki
,
Y.
,
1990
, “
Acoustical Properties of Porous Materials-Generalizations of Empirical Models
,”
J. Acoust. Soc. Jpn. (E)
,
11
(
1
), pp.
25
28
.10.1250/ast.11.25
23.
Horoshenkov
,
K. V.
,
Attenborough
,
K.
, and
Chandler-Wilde
,
S. N.
,
1998
, “
Padé Approximants for the Acoustical Properties of Rigid Frame Porous Media With Pore Size Distributions
,”
J. Acoust. Soc. Am.
,
104
(
3
), pp.
1198
1209
.10.1121/1.424328
24.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010801
.10.1115/1.4000563
25.
Di Paola
,
M.
,
Failla
,
G.
,
Pirrotta
,
A.
,
Sofi
,
A.
, and
Zingales
,
M.
,
2013
, “
The Mechanically Based Non-Local Elasticity: An Overview of Main Results and Future Challenges
,”
Philos. Trans. R. Soc. A
,
371
(
1993
), p.
20120433
.10.1098/rsta.2012.0433
26.
Di Matteo
,
A.
,
Kougioumtzoglou
,
I. A.
,
Pirrotta
,
A.
,
Spanos
,
P. D.
, and
Di Paola
,
M.
,
2014
, “
Stochastic Response Determination of Nonlinear Oscillators With Fractional Derivatives Elements Via the Wiener Path Integral
,”
Probab. Eng. Mech.
,
38
, pp.
127
135
.10.1016/j.probengmech.2014.07.001
27.
dos Santos
,
K. R.
,
Brudastova
,
O.
, and
Kougioumtzoglou
,
I. A.
,
2020
, “
Spectral Identification of Nonlinear Multi-Degree-of-Freedom Structural Systems With Fractional Derivative Terms Based on Incomplete Non-Stationary Data
,”
Struct. Saf.
,
86
, p.
101975
.10.1016/j.strusafe.2020.101975
28.
Petromichelakis
,
I.
,
Psaros
,
A. F.
, and
Kougioumtzoglou
,
I. A.
,
2021
, “
Stochastic Response Analysis and Reliability-Based Design Optimization of Nonlinear Electromechanical Energy Harvesters With Fractional Derivative Elements
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
7
(
1
), p.
010901
.10.1115/1.4049232
29.
Crandall
,
S. H.
,
1970
, “
The Role of Damping in Vibration Theory
,”
J. Sound Vib.
,
11
(
1
), pp.
3
18
.10.1016/S0022-460X(70)80105-5
30.
Spanos
,
P. D.
, and
Zeldin
,
B. A.
,
2000
, “
Pitfalls of Deterministic and Random Analyses of Systems With Hysteresis
,”
J. Eng. Mech.
,
126
(
10
), pp.
1108
1110
.10.1061/(ASCE)0733-9399(2000)126:10(1108)
31.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
2003
,
Random Vibration and Statistical Linearization
,
Courier Corporation
,
Dover Publications, Mineola, NY
.
32.
Shinozuka
,
M.
, and
Deodatis
,
G.
,
1991
, “
Simulation of Stochastic Processes by Spectral Representation
,”
ASME Appl. Mech. Rev.
,
44
(
4
), pp.
191
204
.10.1115/1.3119501
33.
Spanos
,
P. D.
, and
Zeldin
,
B. A.
,
1998
, “
Monte Carlo Treatment of Random Fields: A Broad Perspective
,”
ASME Appl. Mech. Rev.
,
51
(
3
), pp.
219
237
.10.1115/1.3098999
34.
Nocedal
,
J.
, and
Wright
,
S. J.
,
1999
,
Numerical Optimization
,
Springer
,
Berlin
.
35.
Spanos
,
P.-T. D.
,
1983
, “
Spectral Moments Calculation of Linear System Output
,”
ASME J. Appl. Mech.
,
50
(
4a
), pp.
901
903
.10.1115/1.3167169
36.
Spanos
,
P.-T. D.
,
1987
, “
An Approach to Calculating Random Vibration Integrals
,”
ASME J. Appl. Mech.
,
54
(
2
), pp.
409
413
.10.1115/1.3173028
37.
Spanos
,
P. D.
, and
Miller
,
S. M.
,
1994
, “
Hilbert Transform Generalization of a Classical Random Vibration Integral
,”
ASME J. Appl. Mech.
,
61
(
3
), pp.
575
581
.10.1115/1.2901498
38.
Spanos
,
P.-T. D.
,
1986
, “
Filter Approaches to Wave Kinematics Approximation
,”
Appl. Ocean Res.
,
8
(
1
), pp.
2
7
.10.1016/S0141-1187(86)80025-6
39.
Chai
,
W.
,
Naess
,
A.
, and
Leira
,
B. J.
,
2015
, “
Filter Models for Prediction of Stochastic Ship Roll Response
,”
Probab. Eng. Mech.
,
41
, pp.
104
114
.10.1016/j.probengmech.2015.06.002
40.
Roberts
,
R. A.
, and
Mullis
,
C. T.
,
1987
,
Digital Signal Processing
,
Addison-Wesley Longman Publishing Co., Inc
., Reading, MA.
41.
Clough
,
R. W.
, and
Penzien
,
J.
,
1975
,
Dynamics of Structures
,
McGraw-Hill
,
New York
.
42.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
,
1997
, “
The Matlab Ode Suite
,”
SIAM J. Sci. Comput.
,
18
(
1
), pp.
1
22
.10.1137/S1064827594276424
43.
Clerc
,
M.
,
2010
,
Particle Swarm Optimization
, Vol.
93
,
Wiley
,
London, UK
.
44.
Boggs
,
P. T.
, and
Tolle
,
J. W.
,
1995
, “
Sequential Quadratic Programming
,”
Acta Numerica
,
4
, pp.
1
51
.10.1017/S0962492900002518
You do not currently have access to this content.