Abstract

With the blooming of the electric vehicle market and the advancement in the lithium-ion battery industry, silicon anode has shown great potential for the next-generation battery. Using the state-of-the-art additive manufacturing technique (three-dimensional (3D) holographic lithography), researchers have demonstrated that silicon anode can be fabricated as a three-dimensional bicontinuous porous microstructure. However, the volume fluctuation of the silicon anode caused by lithiation during the discharging process causes continuous capacity decay and poor cycling life. Besides, uncertainties are inherent in the manufacturing and usage processes, making it crucial to systematically consider them in the silicon anode design to improve its performance and reliability. To fill the gap between current silicon anode research and future industrial need, this study established a digital twin to investigate the optimal design for silicon anode under the uncertainties of additive manufacturing and battery usage. This study started with developing multiphysics finite element models of the silicon anode lithiation process to investigate the volume fluctuation of silicon. Then, surrogate models were built based on the results from the finite element models to reduce computational cost. The reliability-based design optimization (RBDO) was employed to find the best design point for the silicon anode, in which an outer optimization loop maximized the objective function and an inner loop dedicated to reliability analysis. Finally, the Pareto optimal front of the silicon anode designs was obtained and validated, which shows over 10% improvements in the silicon anode's total capacity and rate capability.

References

1.
Pang
,
Y.
,
Cao
,
Y.
,
Chu
,
Y.
,
Liu
,
M.
,
Snyder
,
K.
,
MacKenzie
,
D.
, and
Cao
,
C.
,
2020
, “
Additive Manufacturing of Batteries
,”
Adv. Funct. Mater.
,
30
(
1
), p.
1906244
.10.1002/adfm.201906244
2.
Cohen
,
E.
,
Menkin
,
S.
,
Lifshits
,
M.
,
Kamir
,
Y.
,
Gladkich
,
A.
,
Kosa
,
G.
, and
Golodnitsky
,
D.
,
2018
, “
Novel Rechargeable 3D-Microbatteries on 3D-Printed-Polymer Substrates: Feasibility Study
,”
Electrochim. Acta
,
265
(
2018
), pp.
690
701
.10.1016/j.electacta.2018.01.197
3.
Lin
,
J.
,
Fan
,
E.
,
Zhang
,
X.
,
Chen
,
R.
,
Wu
,
F.
, and
Li
,
L.
,
2022
, “
Sustainable Recycling of Cathode Scrap Towards High‐Performance Anode Materials for Li‐Ion Batteries
,”
Adv. Energy Mater.
,
12
(
2
), p.
2103288
.10.1002/aenm.202103288
4.
Liu
,
Z.
,
Wu
,
J.
,
Fu
,
W.
,
Kabirzadeh
,
P.
,
Chung
,
I. B.
,
Dipto
,
M. J.
,
Miljkovic
,
N.
,
Wang
,
P.
, and
Li
,
Y.
, “
Control Co-Design of Battery Packs With Immersion Cooling
,”
ASME
Paper No. IMECE2023-112873.10.1115/IMECE2023-112873
5.
Liu
,
Z.
,
Xu
,
Y.
,
Wu
,
H.
,
Wang
,
P.
, and
Li
,
Y.
,
2023
, “
Data-Driven Control Co-Design for Indirect Liquid Cooling Plate With Microchannels for Battery Thermal Management
,”
ASME
Paper No. DETC2023-116921.10.1115/DETC2023-116921
6.
Zheng
,
Z.
,
Liu
,
Z.
,
Kohtz
,
S.
,
Wang
,
P.
,
Li
,
Y.
,
Fu
,
W.
,
Miljkovic
,
N.
, and
Smith
,
S.
,
2022
, “
Electrical and Thermal Active Co-Management for Lithium-Ion Batteries
,”
2022 IEEE Transportation Electrification Conference & Expo (ITEC)
, Anaheim, CA, June 15–17, pp.
1159
1162
.10.1109/ITEC53557.2022.9813807
7.
Manthiram
,
A.
,
2020
, “
A Reflection on Lithium-Ion Battery Cathode Chemistry
,”
Nat. Commun.
,
11
(
1
), p.
1550
.10.1038/s41467-020-15355-0
8.
Liu
,
Z.
,
Sederholm
,
J. G.
,
Lan
,
K.-W.
,
Cho
,
E. J.
,
Dipto
,
M. J.
,
Gurumukhi
,
Y.
,
Rabbi
,
K. F.
, et al.,
2023
, “
Life Cycle Assessment of Hydrometallurgical Recycling for Cathode Active Materials
,”
J. Power Sources
,
580
, p.
233345
.10.1016/j.jpowsour.2023.233345
9.
Liu
,
Z.
,
Sederholm
,
J. G.
,
Lan
,
K. W.
,
Hatzell
,
M. C.
,
Perry
,
N. H.
,
Miljkovic
,
N.
,
Braun
,
P. V.
,
Li
,
Y.
, and
Wang
,
P.
,
2023
, “
A Comprehensive Comparison for Battery Cathode Leaching Processes
,”
2023 IEEE Transportation Electrification Conference & Expo (ITEC)
, Detroit, MI, June 21–23, pp.
1
5
.10.1109/ITEC55900.2023.10187051
10.
Fergus
,
J. W.
,
2010
, “
Ceramic and Polymeric Solid Electrolytes for Lithium-Ion Batteries
,”
J. Power Sources
,
195
(
15
), pp.
4554
4569
.10.1016/j.jpowsour.2010.01.076
11.
Lu
,
J.
,
Chen
,
Z.
,
Pan
,
F.
,
Cui
,
Y.
, and
Amine
,
K.
,
2018
, “
High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries
,”
Electrochem. Energy Rev.
,
1
(
1
), pp.
35
53
.10.1007/s41918-018-0001-4
12.
Thackeray
,
M. M.
,
Vaughey
,
J. T.
, and
Fransson
,
L. M. L.
,
2002
, “
Recent Developments in Anode Materials for Lithium Batteries
,”
JOM
,
54
(
3
), pp.
20
23
.10.1007/BF02822613
13.
Zhang
,
W.-J.
,
2011
, “
A Review of the Electrochemical Performance of Alloy Anodes for Lithium-Ion Batteries
,”
J. Power Sources
,
196
(
1
), pp.
13
24
.10.1016/j.jpowsour.2010.07.020
14.
Song
,
B. F.
,
Dhanabalan
,
A.
, and
Biswal
,
S. L.
,
2020
, “
Evaluating the Capacity Ratio and Prelithiation Strategies for Extending Cyclability in Porous Silicon Composite Anodes and Lithium Iron Phosphate Cathodes for High Capacity Lithium-Ion Batteries
,”
J. Energy Storage
,
28
, p.
101268
.10.1016/j.est.2020.101268
15.
Sun
,
L.
,
Liu
,
Y.
,
Shao
,
R.
,
Wu
,
J.
,
Jiang
,
R.
, and
Jin
,
Z.
,
2022
, “
Recent Progress and Future Perspective on Practical Silicon Anode-Based Lithium Ion Batteries
,”
Energy Storage Mater.
,
46
, pp.
482
502
.10.1016/j.ensm.2022.01.042
16.
Zhang
,
S.
,
Du
,
Z.
,
Lin
,
R.
,
Jiang
,
T.
,
Liu
,
G.
,
Wu
,
X.
, and
Weng
,
D.
,
2010
, “
Nickel Nanocone-Array Supported Silicon Anode for High-Performance Lithium-Ion Batteries
,”
Adv. Mater.
,
22
(
47
), pp.
5378
5382
.10.1002/adma.201003017
17.
Xu
,
C.
,
Wang
,
B.
,
Luo
,
H.
,
Jing
,
P.
,
Zhang
,
X.
,
Wang
,
Q.
,
Zhang
,
Y.
, and
Wu
,
H.
,
2020
, “
Embedding Silicon in Pinecone‐Derived Porous Carbon as a High‐Performance Anode for Lithium‐Ion Batteries
,”
ChemElectroChem
,
7
(
13
), pp.
2889
2895
.10.1002/celc.202000827
18.
Yao
,
W.
,
Chen
,
J.
,
Zhan
,
L.
,
Wang
,
Y.
, and
Yang
,
S.
,
2017
, “
Two-Dimensional Porous Sandwich-Like C/Si–Graphene–Si/C Nanosheets for Superior Lithium Storage
,”
ACS Appl. Mater. Interfaces
,
9
(
45
), pp.
39371
39379
.10.1021/acsami.7b11721
19.
Hou
,
L.
,
Zheng
,
H.
,
Cui
,
R.
,
Jiang
,
Y.
,
Li
,
Q.
,
Jiang
,
X.
,
Gao
,
J.
, and
Gao
,
F.
,
2019
, “
Silicon Carbon Nanohybrids With Expandable Space: A High-Performance Lithium Battery Anodes
,”
Microporous Mesoporous Mater.
,
275
, pp.
42
49
.10.1016/j.micromeso.2018.08.014
20.
Zheng
,
Z.
,
Liu
,
Z.
,
Wang
,
P.
, and
Li
,
Y.
,
2022
, “
Design of Three-Dimensional Bi-Continuous Silicon Based Electrode Materials for High Energy Density Batteries
,”
ASME
Paper No. DETC2022-89652.10.1115/DETC2022-89652
21.
Luo
,
F.
,
Liu
,
B.
,
Zheng
,
J.
,
Chu
,
G.
,
Zhong
,
K.
,
Li
,
H.
,
Huang
,
X.
, and
Chen
,
L.
,
2015
, “
Review—Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-Ion Batteries
,”
J. Electrochem. Soc.
,
162
(
14
), pp.
A2509
A2528
.10.1149/2.0131514jes
22.
Lee
,
W. J.
,
Park
,
M.-H.
,
Wang
,
Y.
,
Lee
,
J. Y.
, and
Cho
,
J.
,
2010
, “
Nanoscale Si Coating on the Pore Walls of SnO2 nanotube Anode for Li Rechargeable Batteries
,”
Chem. Commun.
,
46
(
4
), pp.
622
624
.10.1039/B916483A
23.
Chan
,
C. K.
,
Peng
,
H.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
31
35
.10.1038/nnano.2007.411
24.
Ohara
,
S.
,
Suzuki
,
J.
,
Sekine
,
K.
, and
Takamura
,
T.
,
2004
, “
A Thin Film Silicon Anode for Li-Ion Batteries Having a Very Large Specific Capacity and Long Cycle Life
,”
J. Power Sources
,
136
(
2
), pp.
303
306
.10.1016/j.jpowsour.2004.03.014
25.
Pikul
,
J. H.
,
Gang Zhang
,
H.
,
Cho
,
J.
,
Braun
,
P. V.
, and
King
,
W. P.
,
2013
, “
High-Power Lithium Ion Microbatteries From Interdigitated Three-Dimensional Bicontinuous Nanoporous Electrodes
,”
Nat. Commun.
,
4
(
1
), p.
1732
.10.1038/ncomms2747
26.
Zhang
,
H.
, and
Braun
,
P. V.
,
2012
, “
Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes
,”
Nano Lett.
,
12
(
6
), pp.
2778
2783
.10.1021/nl204551m
27.
Wang
,
M.
,
Xiao
,
X.
, and
Huang
,
X.
,
2017
, “
A Multiphysics Microstructure-Resolved Model for Silicon Anode Lithium-Ion Batteries
,”
J. Power Sources
,
348
, pp.
66
79
.10.1016/j.jpowsour.2017.02.037
28.
Sun
,
P.
,
Davis
,
J.
, III
,
Cao
,
L.
,
Jiang
,
Z.
,
Cook
,
J. B.
,
Ning
,
H.
,
Liu
,
J.
, et al.,
2019
, “
High Capacity 3D Structured Tin-Based Electroplated Li-Ion Battery Anodes
,”
Energy Storage Mater.
,
17
, pp.
151
156
.10.1016/j.ensm.2018.11.017
29.
Armstrong
,
E.
, and
O'Dwyer
,
C.
,
2015
, “
Artificial Opal Photonic Crystals and Inverse Opal Structures – Fundamentals and Applications From Optics to Energy Storage
,”
J. Mater. Chem. C
,
3
(
24
), pp.
6109
6143
.10.1039/C5TC01083G
30.
Lin
,
A. A.
,
Jiang
,
Z.
,
Yee
,
S. S.
,
Carpenter
,
E. L.
,
Pikul
,
J. H.
, and
Issadore
,
D.
, May
2023
, “
Electroformed Inverse‐Opal Nanostructures for Surface‐Marker‐Specific Isolation of Extracellular Vesicles Directly From Complex Media
,”
Adv. Mater. Technol.
,
8
(
9
), p. 2201622.10.1002/admt.202201622
31.
Park
,
S.-G.
,
Miyake
,
M.
,
Yang
,
S.-M.
, and
Braun
,
P. V.
,
2011
, “
Cu2O Inverse Woodpile Photonic Crystals by Prism Holographic Lithography and Electrodeposition
,”
Adv. Mater.
,
23
(
24
), pp.
2749
2752
.10.1002/adma.201004547
32.
Jeon
,
S.
,
Park
,
J.-U.
,
Cirelli
,
R.
,
Yang
,
S.
,
Heitzman
,
C. E.
,
Braun
,
P. V.
,
Kenis
,
P. J. A.
, and
Rogers
,
J. A.
,
2004
, “
Fabricating Complex Three-Dimensional Nanostructures With High-Resolution Conformable Phase Masks
,”
Proc. Natl. Acad. Sci.
,
101
(
34
), pp.
12428
12433
.10.1073/pnas.0403048101
33.
Gonzalez‐Hernandez
,
D.
,
Varapnickas
,
S.
,
Bertoncini
,
A.
,
Liberale
,
C.
, and
Malinauskas
,
M.
,
2023
, “
Micro‐Optics 3D Printed Via Multi‐Photon Laser Lithography
,”
Adv. Opt. Mater.
,
11
(
1
), p.
2201701
.10.1002/adom.202201701
34.
Ning
,
H.
,
Pikul
,
J. H.
,
Zhang
,
R.
,
Li
,
X.
,
Xu
,
S.
,
Wang
,
J.
,
Rogers
,
J. A.
,
King
,
W. P.
, and
Braun
,
P. V.
,
2015
, “
Holographic Patterning of High-Performance on-Chip 3D Lithium-Ion Microbatteries
,”
Proc. Natl. Acad. Sci.
,
112
(
21
), pp.
6573
6578
.10.1073/pnas.1423889112
35.
Wagg
,
D. J.
,
Worden
,
K.
,
Barthorpe
,
R. J.
, and
Gardner
,
P.
,
2020
, “
Digital Twins: State-of-the-Art and Future Directions for Modeling and Simulation in Engineering Dynamics Applications
,”
ASME ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
6
(
3
), p. 03090
1
.10.1115/1.4046739
36.
Mahadevan
,
S.
,
Nath
,
P.
, and
Hu
,
Z.
,
2022
, “
Uncertainty Quantification for Additive Manufacturing Process Improvement: Recent Advances
,”
ASME ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
8
(
1
), p.
010801
.10.1115/1.4053184
37.
Xu
,
Y.
,
Wu
,
H.
,
Liu
,
Z.
,
Wang
,
P.
, and
Li
,
Y.
,
2024
, “
Multi-Task Learning for Design Under Uncertainty With Multi-Fidelity Partially Observed Information
,”
ASME J. Mech. Des.
,
146
(
8
), p. 081704.10.1115/1.4064492
38.
Wu
,
H.
,
Bansal
,
P.
,
Liu
,
Z.
,
Li
,
Y.
, and
Wang
,
P.
,
2023
, “
Uncertainty Quantification on Mechanical Behavior of Corroded Plate With Statistical Shape Modeling
,”
ASME
Paper No. DETC2023-117050.10.1115/DETC2023-117050
39.
Xu
,
Y.
,
Wu
,
H.
,
Liu
,
Z.
, and
Wang
,
P.
,
2023
, “
Multi-Task Multi-Fidelity Machine Learning for Reliability-Based Design With Partially Observed Information
,”
ASME
Paper No. DETC2023-117032.10.1115/DETC2023-117032
40.
Hamdan
,
B.
,
Liu
,
Z.
,
Ho
,
K.
,
Büyüktahtakın
,
İ. E.
, and
Wang
,
P.
,
2023
, “
A Dynamic Multi-Stage Design Framework for Staged Deployment Optimization of Highly Stochastic Systems
,”
Struct. Multidiscip. Optim.
,
66
(
7
), p.
162
.10.1007/s00158-023-03609-6
41.
Wu
,
H.
,
Xu
,
Y.
,
Liu
,
Z.
,
Li
,
Y.
, and
Wang
,
P.
,
2023
, “
Adaptive Machine Learning With Physics-Based Simulations for Mean Time to Failure Prediction of Engineering Systems
,”
Reliab. Eng. Syst. Saf.
,
240
, p.
109553
.10.1016/j.ress.2023.109553
42.
Wu
,
J.
,
Chung
,
I.-B.
,
Liu
,
Z.
, and
Wang
,
P.
,
2023
, “
Co-Design Optimization of Combined Heat and Power-Based Microgrids
,”
J. Renewable Sustainable Energy
,
15
(
5
), p.
056301
.10.1063/5.0165676
43.
Zheng
,
Z.
,
Xu
,
Y.
, and
Wang
,
P.
,
2021
, “
Uncertainty Quantification Analysis on Mechanical Properties of the Structured Silicon Anode Via Surrogate Models
,”
J. Electrochem. Soc.
,
168
(
4
), p.
040508
.10.1149/1945-7111/abf182
44.
Roy
,
A.
, and
Chakraborty
,
S.
, May
2023
, “
Support Vector Machine in Structural Reliability Analysis: A Review
,”
Reliab. Eng. Syst. Saf.
,
233
, p.
109126
.10.1016/j.ress.2023.109126
45.
Lee
,
S.
, May
2021
, “
Monte Carlo Simulation Using Support Vector Machine and Kernel Density for Failure Probability Estimation
,”
Reliab. Eng. Syst. Saf.
,
209
, p.
107481
.10.1016/j.ress.2021.107481
46.
Teixeira
,
R.
,
Nogal
,
M.
, and
O'Connor
,
A.
,
2021
, “
Adaptive Approaches in Metamodel-Based Reliability Analysis: A Review
,”
Struct. Saf.
,
89
, p.
102019
.10.1016/j.strusafe.2020.102019
47.
Zhang
,
D.
,
Han
,
X.
,
Jiang
,
C.
,
Liu
,
J.
, and
Li
,
Q.
,
2017
, “
Time-Dependent Reliability Analysis Through Response Surface Method
,”
ASME J. Mech. Des.
,
139
(
4
), p. 041404.10.1115/1.4035860
48.
Hurtado
,
J. E.
, and
Alvarez
,
D. A.
,
2001
, “
Neural-Network-Based Reliability Analysis: A Comparative Study
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
1–2
), pp.
113
132
.10.1016/S0045-7825(01)00248-1
49.
Saraygord Afshari
,
S.
,
Enayatollahi
,
F.
,
Xu
,
X.
, and
Liang
,
X.
,
2022
, “
Machine Learning-Based Methods in Structural Reliability Analysis: A Review
,”
Reliab. Eng. Syst. Saf.
,
219
, p.
108223
.10.1016/j.ress.2021.108223
50.
Wu
,
H.
,
Zhu
,
Z.
, and
Du
,
X.
,
2020
, “
System Reliability Analysis With Autocorrelated Kriging Predictions
,”
ASME J. Mech. Des.
,
142
(
10
), p. 101702.10.1115/1.4046648
51.
Kleijnen
,
J. P. C.
,
2009
, “
Kriging Metamodeling in Simulation: A Review
,”
Eur. J. Oper. Res.
,
192
(
3
), pp.
707
716
.10.1016/j.ejor.2007.10.013
52.
Jeon
,
T.
,
Kim
,
D.-H.
, and
Park
,
S.-G.
,
2018
, “
Holographic Fabrication of 3D Nanostructures
,”
Adv. Mater. Interfaces
,
5
(
18
), p.
1800330
.10.1002/admi.201800330
53.
Liu
,
Z.
,
Pan
,
W.
,
Wang
,
K.
,
Matia
,
Y.
,
Xu
,
A.
,
Barreiros
,
J. A.
,
Darkes‐Burkey
,
C.
, et al.,
2022
, “
Acoustophoretic Liquefaction for 3D Printing Ultrahigh‐Viscosity Nanoparticle Suspensions
,”
Adv. Mater.
,
34
(
7
), p.
2106183
.10.1002/adma.202106183
54.
Wang
,
K.
,
Pan
,
W.
,
Liu
,
Z.
,
Wallin
,
T. J.
,
van Dover
,
G.
,
Li
,
S.
,
Giannelis
,
E. P.
,
Menguc
,
Y.
, and
Shepherd
,
R. F.
,
2020
, “
3D Printing of Viscoelastic Suspensions Via Digital Light Synthesis for Tough Nanoparticle–Elastomer Composites
,”
Adv. Mater
,
32
(
25
), p.
2001646
.10.1002/adma.202001646
55.
Li
,
S.
,
Bai
,
H.
,
Liu
,
Z.
,
Zhang
,
X.
,
Huang
,
C.
,
Wiesner
,
L. W.
,
Silberstein
,
M.
, and
Shepherd
,
R. F.
,
2021
, “
Digital Light Processing of Liquid Crystal Elastomers for Self-Sensing Artificial Muscles
,”
Sci. Adv.
,
7
(
30
), p.
eabg3677
.10.1126/sciadv.abg3677
56.
Jenness
,
N. J.
,
Cole
,
D. G.
, and
Clark
,
R. L.
,
2008
, “
Three-Dimensional Holographic Lithography Using a Spatial Light Modulator
,”
ASME
Paper No. DETC2008-50067.10.1115/DETC2008-50067
57.
Shoji
,
S.
,
Zaccaria
,
R.
,
Sun
,
H.-B.
, and
Kawata
,
S.
,
2006
, “
Multi-Step Multi-Beam Laser Interference Patterning of Three-Dimensional Photonic Lattices
,”
Opt. Express
,
14
(
6
), p.
2309
.10.1364/OE.14.002309
58.
Montgomery
,
D. C.
, and
Woodall
,
W. H.
,
2008
, “
An Overview of Six Sigma
,”
Int. Stat. Rev.
,
76
(
3
), pp.
329
346
.10.1111/j.1751-5823.2008.00061.x
59.
Parsons
,
H. M.
,
Ekman
,
D. R.
,
Collette
,
T. W.
, and
Viant
,
M. R.
,
2009
, “
Spectral Relative Standard Deviation: A Practical Benchmark in Metabolomics
,”
Analyst
,
134
(
3
), pp.
478
485
.10.1039/B808986H
60.
Borisenko
,
N.
,
Zein El Abedin
,
S.
, and
Endres
,
F.
,
2006
, “
In Situ STM Investigation of Gold Reconstruction and of Silicon Electrodeposition on Au(111) in the Room Temperature Ionic Liquid 1-Butyl-1-Methylpyrrolidinium Bis(Trifluoromethylsulfonyl)Imide
,”
J. Phys. Chem. B
,
110
(
12
), pp.
6250
6256
.10.1021/jp057337d
61.
Chen
,
D.
,
Jiang
,
J.
,
Kim
,
G.-H.
,
Yang
,
C.
, and
Pesaran
,
A.
,
2016
, “
Comparison of Different Cooling Methods for Lithium Ion Battery Cells
,”
Appl. Therm. Eng.
,
94
, pp.
846
854
.10.1016/j.applthermaleng.2015.10.015
62.
Szczech
,
J. R.
, and
Jin
,
S.
,
2011
, “
Nanostructured Silicon for High Capacity Lithium Battery Anodes
,”
Energy Environ. Sci.
,
4
(
1
), pp.
56
72
.10.1039/C0EE00281J
63.
Zhang
,
L.
,
Al-Mamun
,
M.
,
Wang
,
L.
,
Dou
,
Y.
,
Qu
,
L.
,
Dou
,
S. X.
,
Liu
,
H. K.
, and
Zhao
,
H.
,
2022
, “
The Typical Structural Evolution of Silicon Anode
,”
Cell Rep. Phys. Sci.
,
3
(
4
), p.
100811
.10.1016/j.xcrp.2022.100811
64.
Shewmon
,
P.
,
2016
,
Diffusion in Solids
,
Springer
,
Berlin, Germany
.
65.
Bower
,
A. F.
,
2009
,
Applied Mechanics of Solids
,
CRC Press
,
Boca Raton, FL
.
66.
Zhao
,
K.
,
Pharr
,
M.
,
Cai
,
S.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2011
, “
Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge
,”
J. Am. Ceram. Soc.
,
94
(
s1
), pp.
s226
s235
.10.1111/j.1551-2916.2011.04432.x
67.
Wang
,
M.
,
Xiao
,
X.
, and
Huang
,
X.
,
2016
, “
Study of Lithium Diffusivity in Amorphous Silicon Via Finite Element Analysis
,”
J. Power Sources
,
307
, pp.
77
85
.10.1016/j.jpowsour.2015.12.082
68.
Zheng
,
Z.
,
Chen
,
B.
,
Fritz
,
N.
,
Gurumukhi
,
Y.
,
Cook
,
J.
,
Ates
,
M. N.
,
Miljkovic
,
N.
,
Braun
,
P. V.
, and
Wang
,
P.
,
2020
, “
The Impact of Non-Uniform Metal Scaffolds on the Performance of 3D Structured Silicon Anodes
,”
J. Energy Storage
,
30
, p.
101502
.10.1016/j.est.2020.101502
69.
Dubois
,
S. M. M.
,
Rignanese
,
G. M.
,
Pardoen
,
T.
, and
Charlier
,
J. C.
,
2006
, “
Ideal Strength of Silicon: An ab Initio Study
,”
Phys. Rev. B
,
74
(
23
), p. 235203.10.1103/PhysRevB.74.235203
70.
Wu
,
H.
, and
Du
,
X.
,
2020
, “
System Reliability Analysis With Second-Order Saddlepoint Approximation
,”
ASME ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
6
(
4
), p. 04100
1
.10.1115/1.4047217
71.
Wu
,
H.
,
Hu
,
Z.
, and
Du
,
X.
,
2021
, “
Time-Dependent System Reliability Analysis With Second-Order Reliability Method
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031101
.10.1115/1.4048732
72.
Wu
,
H.
, and
Du
,
X.
,
2022
, “
Envelope Method for Time- and Space-Dependent Reliability Prediction
,”
ASME ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
8
(
4
), p. 04120
1
.10.1115/1.4054171
73.
Xiao
,
N.-C.
,
Zuo
,
M. J.
, and
Zhou
,
C.
,
2018
, “
A New Adaptive Sequential Sampling Method to Construct Surrogate Models for Efficient Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
169
, pp.
330
338
.10.1016/j.ress.2017.09.008
74.
Tabandeh
,
A.
,
Jia
,
G.
, and
Gardoni
,
P.
,
2022
, “
A Review and Assessment of Importance Sampling Methods for Reliability Analysis
,”
Struct. Saf.
,
97
, p.
102216
.10.1016/j.strusafe.2022.102216
You do not currently have access to this content.