Abstract

Planetary gearbox has been widely applied in the mechanical transmission system, and the failure types of planetary gearbox are more and more diversified. The conventional fault diagnosis methods focus on identifying the faults in the fault library, but ignored the faults outside the fault library. However, it is impossible to build a fault library for all failure types. Targeting the problem of identifying the faults outside the fault library, a hierarchical fault diagnosis method for planetary gearbox with shift-invariant dictionary and orthogonal matching pursuit with adaptive noise (OMPAN) is proposed in this paper. By k-means singular value decomposition (K-SVD) dictionary learning method and shift-invariant strategy, a shift-invariant dictionary is constructed so that the normal modulation components of signals can be completed decomposed. OMPAN algorithm is proposed, which uses the white Gaussian noise to improve the solution method of the orthogonal matching pursuit (OMP) algorithm so that it can separate the modulation components in the signal more accurately. The fault feature extraction is developed via shift-invariant dictionary and OMPAN. A hierarchical classifier is proposed with three subclassifiers so that both the faults in the fault library and the faults outside the fault library are identified. The effectiveness of the proposed hierarchical fault diagnosis method is validated by experiments. Result show that the proposed shift-invariant dictionary and OMPAN method has achieved a superior performance in highlighting fault features compared with other two sparse decomposition methods. The proposed hierarchical fault diagnosis approach has achieved a good performance both in classification of the faults in the fault library and identification of the faults outside the fault library.

References

1.
Lei
,
Y.
,
Lin
,
J.
,
Zuo
,
M. J.
, and
He
,
Z.
,
2014
, “
Condition Monitoring and Fault Diagnosis of Planetary Gearboxes: A Review
,”
Measurement
,
48
, pp.
292
305
.10.1016/j.measurement.2013.11.012
2.
Chen
,
J.
,
Li
,
Z.
,
Pan
,
J.
,
Chen
,
G.
,
Zi
,
Y.
,
Yuan
,
J.
,
Chen
,
B.
, and
He
,
Z.
,
2016
, “
Wavelet Transform Based on Inner Product in Fault Diagnosis of Rotating Machinery: A Review
,”
Mech. Syst. Signal Process.
,
70-71
, pp.
1
35
.10.1016/j.ymssp.2015.08.023
3.
Lei
,
Y.
,
Lin
,
J.
,
He
,
Z.
, and
Zuo
,
M. J.
,
2013
, “
A Review on Empirical Mode Decomposition in Fault Diagnosis of Rotating Machinery
,”
Mech. Syst. Signal Process.
,
35
(
1–2
), pp.
108
126
.10.1016/j.ymssp.2012.09.015
4.
Wang
,
L.
,
Liu
,
Z.
,
Miao
,
Q.
, and
Zhang
,
X.
,
2018
, “
Complete Ensemble Local Mean Decomposition With Adaptive Noise and Its Application to Fault Diagnosis for Rolling Bearings
,”
Mech. Syst. Signal Process.
,
106
, pp.
24
39
.10.1016/j.ymssp.2017.12.031
5.
Rani
,
M.
,
Dhok
,
S. B.
, and
Deshmukh
,
R. B.
,
2018
, “
A Systematic Review of Compressive Sensing: Concepts, Implementations and Applications
,”
IEEE Access
,
6
, pp.
4875
4894
.10.1109/ACCESS.2018.2793851
6.
Feng
,
Z.
,
Zhou
,
Y.
,
Zuo
,
M. J.
,
Chu
,
F.
, and
Chen
,
X.
,
2017
, “
Atomic Decomposition and Sparse Representation for Complex Signal Analysis in Machinery Fault Diagnosis: A Review With Examples
,”
Measurement
,
103
, pp.
106
132
.10.1016/j.measurement.2017.02.031
7.
Li
,
Q.
,
Hu
,
W.
,
Peng
,
E.
, and
Liang
,
S.
,
2018
, “
Multichannel Signals Reconstruction Based on Tunable Q-Factor Wavelet Transform-Morphological Component Analysis and Sparse Bayesian Iteration for Rotating Machines
,”
Entropy
,
20
(
4
), p.
263
.10.3390/e20040263
8.
Lin
,
H.
,
Tang
,
J.
, and
Mechefske
,
C.
,
2019
, “
Impulse Detection Using a Shift-Invariant Dictionary and Multiple Compressions
,”
J. Sound Vib.
,
449
, pp.
1
17
.10.1016/j.jsv.2019.02.027
9.
Wang
,
H.
, and
Sun
,
D.
,
2019
, “
The Application of Matching Pursuit Based on Multi Feature Pattern Set in the Signal Processing of Rotating Machinery
,”
J. Vib. Control
,
25
(
13
), pp.
1974
1987
.10.1177/1077546319844430
10.
Lu
,
Y.
,
Xie
,
R.
, and
Liang
,
S. Y.
,
2019
, “
Bearing Fault Diagnosis With Nonlinear Adaptive Dictionary Learning
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9–12
), pp.
4227
4239
.10.1007/s00170-019-03455-1
11.
Feng
,
Z.
, and
Liang
,
M.
,
2016
, “
Complex Signal Analysis for Planetary Gearbox Fault Diagnosis Via Shift Invariant Dictionary Learning
,”
Measurement
,
90
, pp.
382
395
.10.1016/j.measurement.2016.04.078
12.
Kong
,
Y.
,
Qin
,
Z.
,
Han
,
Q.
,
Wang
,
T.
, and
Chu
,
F.
,
2022
, “
Enhanced Dictionary Learning Based Sparse Classification Approach With Applications to Planetary Bearing Fault Diagnosis
,”
Appl. Acoust.
,
196
, p.
108870
.10.1016/j.apacoust.2022.108870
13.
Crespo Marques
,
E.
,
Maciel
,
N.
,
Naviner
,
L.
,
Cai
,
H.
, and
Yang
,
J.
,
2019
, “
A Review of Sparse Recovery Algorithms
,”
IEEE Access
,
7
, pp.
1300
1322
.10.1109/ACCESS.2018.2886471
14.
Li
,
Y.
,
Zheng
,
F.
,
Xiong
,
Q.
, and
Zhang
,
W.
,
2021
, “
A Secondary Selection-Based Orthogonal Matching Pursuit Method for Rolling Element Bearing Diagnosis
,”
Measurement
,
176
, p.
109199
.10.1016/j.measurement.2021.109199
15.
Song
,
L.
, and
Yan
,
R.
,
2019
, “
Bearing Fault Diagnosis Based on Cluster-Contraction Stage-Wise Orthogonal-Matching-Pursuit
,”
Measurement
,
140
, pp.
240
253
.10.1016/j.measurement.2019.03.061
16.
Zhang
,
L.
,
Li
,
Y.
,
Dong
,
L.
,
Yang
,
X.
,
Ding
,
X.
,
Zeng
,
Q.
,
Wang
,
L.
, and
Shao
,
Y.
,
2021
, “
Gearbox Fault Diagnosis Using Multiscale Sparse Frequency-Frequency Distributions
,”
IEEE Access
,
9
, pp.
113089
113099
.10.1109/ACCESS.2021.3104281
17.
Wang
,
L.
,
Cai
,
G.
,
You
,
W.
,
Huang
,
W.
, and
Zhu
,
Z.
,
2017
, “
Transients Extraction Based on Averaged Random Orthogonal Matching Pursuit Algorithm for Machinery Fault Diagnosis
,”
IEEE Trans. Instrum. Meas.
,
66
(
12
), pp.
3237
3248
.10.1109/TIM.2017.2734198
18.
Zhu
,
Z.
,
Lei
,
Y.
,
Qi
,
G.
,
Chai
,
Y.
,
Mazur
,
N.
,
An
,
Y.
, and
Huang
,
X.
,
2023
, “
A Review of the Application of Deep Learning in Intelligent Fault Diagnosis of Rotating Machinery
,”
Measurement
,
206
, p.
112346
.10.1016/j.measurement.2022.112346
19.
Jiang
,
L.
,
Li
,
S.
, and
Li
,
X.
,
2022
, “
Fault Diagnosis of a Planetary Gearbox Based on a Local bi-Spectrum and a Convolutional Neural Network
,”
Meas. Sci. Technol.
,
33
(
10
), p.
105012
.10.1088/1361-6501/ac7d3d
20.
Shi
,
J.
,
Peng
,
D.
,
Peng
,
Z.
,
Zhang
,
Z.
,
Goebel
,
K.
, and
Wu
,
D.
,
2022
, “
Planetary Gearbox Fault Diagnosis Using Bidirectional-Convolutional LSTM Networks
,”
Mech. Syst. Signal Process.
,
162
, p.
107996
.10.1016/j.ymssp.2021.107996
21.
Ye
,
Q.
, and
Li
,
C.
,
2020
, “
A Multichannel Data Fusion Method Based on Multiple Deep Belief Networks for Intelligent Fault Diagnosis of Main Reducer
,”
Symmetry
,
12
(
3
), p.
483
.10.3390/sym12030483
22.
Liu
,
R.
,
Yang
,
B.
,
Zio
,
E.
, and
Chen
,
X.
,
2018
, “
Artificial Intelligence for Fault Diagnosis of Rotating Machinery: A Review
,”
Mech. Syst. Signal Process.
,
108
, pp.
33
47
.10.1016/j.ymssp.2018.02.016
23.
Sun
,
T.
,
Yu
,
G.
,
Gao
,
M.
,
Zhao
,
L.
,
Bai
,
C.
, and
Yang
,
W.
,
2021
, “
Fault Diagnosis Methods Based on Machine Learning and Its Applications for Wind Turbines: A Review
,”
IEEE Access
,
9
, pp.
147481
147511
.10.1109/ACCESS.2021.3124025
24.
Tian
,
J.
,
Liu
,
L.
,
Zhang
,
F.
,
Ai
,
Y.
,
Wang
,
R.
, and
Fei
,
C.
,
2019
, “
Multi-Domain Entropy-Random Forest Method for the Fusion Diagnosis of Inter-Shaft Bearing Faults With Acoustic Emission Signals
,”
Entropy
,
22
(
1
), p.
57
.10.3390/e22010057
25.
Li
,
Y.
,
Li
,
G.
,
Yang
,
Y.
,
Liang
,
X.
, and
Xu
,
M.
,
2018
, “
A Fault Diagnosis Scheme for Planetary Gearboxes Using Adaptive Multi-Scale Morphology Filter and Modified Hierarchical Permutation Entropy
,”
Mech. Syst. Signal Process.
,
105
, pp.
319
337
.10.1016/j.ymssp.2017.12.008
26.
Zhang
,
Y.
,
Jia
,
Y.
,
Wu
,
W.
,
Cheng
,
Z.
,
Su
,
X.
, and
Lin
,
A.
,
2020
, “
A Diagnosis Method for the Compound Fault of Gearboxes Based on Multi-Feature and BP-AdaBoost
,”
Symmetry
,
12
(
3
), p.
461
.10.3390/sym12030461
27.
Zhou
,
K.
, and
Tang
,
J.
,
2021
, “
Harnessing Fuzzy Neural Network for Gear Fault Diagnosis With Limited Data Labels
,”
Int. J. Adv. Manuf. Technol.
,
115
(
4
), pp.
1005
1019
.10.1007/s00170-021-07253-6
28.
Zhou
,
K.
,
Diehl
,
E.
, and
Tang
,
J.
,
2023
, “
Deep Convolutional Generative Adversarial Network With Semi-Supervised Learning Enabled Physics Elucidation for Extended Gear Fault Diagnosis Under Data Limitations
,”
Mech. Syst. Signal Process.
,
185
, p.
109772
.10.1016/j.ymssp.2022.109772
29.
Selesnick
,
I. W.
,
2011
, “
Wavelet Transform With Tunable Q-Factor
,”
IEEE Trans. Signal Process.
,
59
(
8
), pp.
3560
3575
.10.1109/TSP.2011.2143711
30.
Ding
,
J.
,
Zhou
,
J.
, and
Yin
,
Y.
,
2019
, “
Fault Detection and Diagnosis of a Wheelset-Bearing System Using a multi-Q-Factor and Multi-Level Tunable Q-Factor Wavelet Transform
,”
Measurement
,
143
, pp.
112
124
.10.1016/j.measurement.2019.05.006
31.
Yang
,
M.
, and
Hoog
,
F.
,
2015
, “
Orthogonal Matching Pursuit With Thresholding and Its Application in Compressive Sensing
,”
IEEE Trans. Signal Process.
,
63
(
20
), pp.
5479
5486
.10.1109/TSP.2015.2453137
32.
Torres
,
M. E.
,
Colominas
,
M. A.
,
Schlotthauer
,
G
, et al
2011
, “
A Complete Ensemble Empirical Mode Decomposition With Adaptive Noise
,”
IEEE International Conference on Acoustics
, Prague, Czech Republic, May 22–27, pp.
4144
4147
.10.1109/ICASSP.2011.5947265
33.
Aharon
,
M.
,
Elad
,
M.
, and
Bruckstein
,
A.
,
2006
, “
K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation
,”
IEEE Trans. Signal Process.
,
54
(
11
), pp.
4311
4322
.10.1109/TSP.2006.881199
34.
Qin
,
Y.
,
Zou
,
J.
,
Tang
,
B.
,
Wang
,
Y.
, and
Chen
,
H.
,
2020
, “
Transient Feature Extraction by the Improved Orthogonal Matching Pursuit and K-SVD Algorithm With Adaptive Transient Dictionary
,”
IEEE Trans. Ind. Inf.
,
16
(
1
), pp.
215
227
.10.1109/TII.2019.2909305
35.
Yang
,
X.
,
Ding
,
K.
,
He
,
G.
, and
Li
,
Y.
,
2018
, “
Double-Dictionary Signal Decomposition Method Based on Split Augmented Lagrangian Shrinkage Algorithm and Its Application in Gearbox Hybrid Faults Diagnosis
,”
J. Sound Vib.
,
432
, pp.
484
501
.10.1016/j.jsv.2018.06.064
36.
Singla
,
M.
, and
Shukla
,
K. K.
,
2020
, “
Robust Statistics-Based Support Vector Machine and Its Variants: A Survey
,”
Neural Comput. Appl.
,
32
(
15
), pp.
11173
11194
.10.1007/s00521-019-04627-6
37.
Teng
,
W.
,
Liu
,
Y.
,
Huang
,
Y.
,
Song
,
L.
,
Liu
,
Y.
, and
Ma
,
Z.
,
2021
, “
Fault Detection of Planetary Subassemblies in a Wind Turbine Gearbox Using TQWT Based Sparse Representation
,”
J. Sound Vib.
,
490
, p.
115707
.10.1016/j.jsv.2020.115707
38.
Li
,
W.
,
Shang
,
Z.
,
Gao
,
M.
,
Qian
,
S.
,
Zhang
,
B.
, and
Zhang
,
J.
,
2021
, “
A Novel Deep Autoencoder and Hyperparametric Adaptive Learning for Imbalance Intelligent Fault Diagnosis of Rotating Machinery
,”
Eng. Appl. Artif. Intell.
,
102
, p.
104279
.10.1016/j.engappai.2021.104279
39.
Kong
,
Y.
,
Chu
,
F.
,
Qin
,
Z.
, and
Han
,
Q.
,
2022
, “
Sparse Learning Based Classification Framework for Planetary Bearing Health Diagnostics
,”
Mechanism Mach. Theory
,
173
, p.
104852
.10.1016/j.mechmachtheory.2022.104852
40.
Wang
,
L.
,
Li
,
X.
,
Xu
,
D.
,
Ai
,
S.
,
Wang
,
C.
, and
Chen
,
C.
,
2022
, “
Bearing Fault Feature Extraction Based on Adaptive OMP and Improved K-SVD
,”
Processes
,
10
(
4
), p.
675
.10.3390/pr10040675
41.
Shao
,
S.
,
McAleer
,
S.
,
Yan
,
R.
, and
Baldi
,
P.
,
2019
, “
Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning
,”
IEEE Trans. Ind. Inf.
,
15
(
4
), pp.
2446
2455
.10.1109/TII.2018.2864759
You do not currently have access to this content.