Fuzzy uncertainty analyses disclose a deeper insight and provide a better understanding of complex systems with highly interdependent parameters. In contrast to probability theory, fuzzy arithmetic is concerned with epistemic uncertainties, which originate from a lack of knowledge or from idealizing assumptions in the modeling process. Direct fuzzy arithmetic can be used to illustrate how parameter uncertainties propagate through a system. In contrast, inverse fuzzy arithmetic can be used to identify admissible parameter uncertainties that obey defined error bounds. In addition, fuzzy arithmetic is capable of providing global sensitivity analyses. Therefore, an improved formulation for inverse analyses as well as a new concept for the computation of global sensitivities is presented. These tools are used here to assess the model-based feed-forward control of a nonlinear system with unstable internal dynamics.

References

References
1.
Seifried
,
R.
,
Burkhardt
,
M.
, and
Held
,
A.
,
2013
, “Trajectory Control of Serial and Parallel Flexible Manipulators Using Model Inversion,”
Multibody Dynamics
,
J.-C. Samin
, and
P. Fisette
, eds. (Computational Methods in Applied Sciences, Vol. 
28
),
Springer
,
Berlin
, pp. 
53
75
.
2.
Rao
,
S.
, and
Sawyer
,
J. P.
,
1995
, “
Fuzzy Finite Element Approach for Analysis of Imprecisely Defined Systems
,”
AIAA J.
,
33
(
12
), pp. 
2364
2370
.10.2514/3.12910
3.
Moens
,
D.
, and
Vandepitte
,
D.
,
2002
, “
Fuzzy Finite Element Method for Frequency Response Function Analysis of Uncertain Structures
,”
AIAA J.
,
40
(
1
), pp. 
126
136
.
4.
Moens
,
D.
, and
Vandepitte
,
D.
,
2005
, “
A Survey of Non-Probabilistic Uncertainty Treatment in Finite Element Analysis (Special Issue on Computational Methods in Stochastic Mechanics and Reliability Analysis)
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
1216
), pp. 
1527
1555
.10.1016/j.cma.2004.03.019
5.
Hanss
,
M.
,
2005
,
Applied Fuzzy Arithmetic—An Introduction with Engineering Applications
,
Springer
,
Berlin
.
6.
Zadeh
,
L. A.
,
1965
, “
Fuzzy Sets
,”
Inform. Control
,
8
(
3
), pp. 
338
353
.10.1016/S0019-9958(65)90241-X
7.
Walz
,
N.-P.
,
Fischer
,
M.
,
Hanss
,
M.
, and
Eberhard
,
P.
,
2012
, “
Uncertainties in Multibody Systems—Potentials and Challenges
,”
Proceedings of the 4th International Conference on Uncertainty in Structural Dynamics
,
P.
Sas
,
D.
Moens
, and
S.
Jonckheere
, eds.,
Katholieke Universiteit Leuven
,
Leuven, Belgium
, pp. 
4643
4657
.
8.
Massa
,
F.
,
Tison
,
T.
, and
Lallemand
,
B.
,
2006
, “
A Fuzzy Procedure for the Static Design of Imprecise Structures
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
912
), pp. 
925
941
.10.1016/j.cma.2005.02.015
9.
Balu
,
A.
, and
Rao
,
B.
,
2013
, “
Confidence Bounds on Design Variables Using High-Dimensional Model Representation-Based Inverse Reliability Analysis
,”
J. Struct. Eng.
,
139
(
6
), pp. 
985
996
.10.1061/(ASCE)ST.1943-541X.0000709
10.
Haag
,
T.
,
2012
,
Forward and Inverse Fuzzy Arithmetic for Uncertainty Analysis With Applications to Structural Mechanics
,
Der Andere Verlag
,
Uelvesbüll, Germany
.
11.
Haag
,
T.
,
Herrmann
,
J.
, and
Hanss
,
M.
,
2010
, “
Identification Procedure for Epistemic Uncertainties Using Inverse Fuzzy Arithmetic
,”
Mech. Syst. Signal Process.
,
24
(
7
), pp. 
2021
2034
.10.1016/j.ymssp.2010.05.010
12.
Kozlov
,
M.
,
Tarasov
,
S.
, and
Khachiyan
,
L.
,
1980
, “
The Polynomial Solvability of Convex Quadratic Programming
,”
USSR Computat. Math. Math. Phys.
,
20
(
5
), pp. 
223
228
.10.1016/0041-5553(80)90098-1
13.
Li
,
G.
,
Rosenthal
,
C.
, and
Rabitz
,
H.
,
2001
, “
High Dimensional Model Representations
,”
J. Phys. Chemi. A
,
105
(
33
), pp. 
7765
7777
.10.1021/jp010450t
14.
Feuersänger
,
C.
,
2010
, “
Sparse Grid Methods for Higher Dimensional Approximation
,” Ph.D. thesis,
Institut für Numerische Simulation, Universität Bonn, Germany
.
15.
Sobol
,
I.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp. 
271
280
.10.1016/S0378-4754(00)00270-6
16.
Walz
,
N.-P.
,
Burkhardt
,
M.
,
Hanss
,
M.
, and
Eberhard
,
P.
,
2015
, “
Sensitivity Computation for Uncertain Dynamical Systems Using High-Dimensional Model Representation and Hierarchical Grids
,”
Procedia IUTAM (Dynamical Analysis of Multibody Systems with Design Uncertainties)
,
13
(
1
), pp. 
127
137
.10.1016/j.piutam.2015.01.010
17.
Bungartz
,
H.-J.
, and
Griebel
,
M.
,
2004
, “
Sparse Grids
,”
Acta Numer.
,
13
, pp. 
147
269
.10.1017/S0962492904000182
18.
Pflüger
,
D.
,
2010
,
Spatially Adaptive Sparse Grids for High-Dimensional Problems
,
Verlag Dr. Hut
,
Munich
.
19.
Adhikari
,
S.
,
Chowdhury
,
R.
, and
Friswell
,
M.
,
2011
, “
High Dimensional Model Representation Method for Fuzzy Structural Dynamics
,”
J. Sound Vib.
,
330
(
7
), pp. 
1516
1529
.10.1016/j.jsv.2010.10.010
20.
Balu
,
A.
, and
Rao
,
B.
,
2012
, “
High Dimensional Model Representation Based Formulations for Fuzzy Finite Element Analysis of Structures
,”
Finite Elem. Anal. Des.
,
50
(
1
), pp. 
217
230
.10.1016/j.finel.2011.09.012
21.
Blajer
,
W.
, and
Kołodziejczyk
,
K.
,
2004
, “
A Geometric Approach to Solving Problems of Control Constraints: Theory and a DAE Framework
,”
Multibody Syst. Dyn.
,
11
(
4
), pp. 
343
364
.10.1023/B:MUBO.0000040800.40045.51
22.
Campbell
,
S. L.
, and
Gear
,
C. W.
,
1995
, “
The Index of General Nonlinear DAEs
,”
Numer. Math.
,
72
(
2
), pp. 
173
196
.10.1007/s002110050165
23.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
3rd ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
24.
Chen
,
D.
, and
Paden
,
B.
,
1996
, “
Stable Inversion of Nonlinear Non-Minimum Systems
,”
Int. J. Control
,
64
(
1
), pp. 
81
97
.10.1080/00207179608921618
25.
Kailath
,
T.
,
1980
,
Linear Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
26.
Holzwarth
,
P.
, and
Eberhard
,
P.
,
2015
, “
SVD-Based Improvements for Component Mode Synthesis in Elastic Multibody Systems
,”
Eur. J. Mech. A/Solids
,
49
(
4
), pp. 
408
418
.10.1016/j.euromechsol.2014.08.009
27.
Adhikari
,
S.
,
2006
, “
Damping Modelling Using Generalized Proportional Damping
,”
J. Sound Vib.
,
293
(
1–2
), pp. 
156
170
.10.1016/j.jsv.2005.09.034
28.
Wallrapp
,
O.
,
1994
, “
Standardization of Flexible Body Modeling in Multibody System Codes, Part I: Definition of Standard Input Data
,”
Mech. Struct. Mach.
,
22
(
3
), pp. 
283
304
.10.1080/08905459408905214
29.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control
,
John Wiley & Sons
,
Hoboken, NJ
.
30.
Damaren
,
C. J.
,
2000
, “
Passivity and Noncollocation in the Control of Flexible Multibody Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
1
), pp. 
11
17
.10.1115/1.482423
You do not currently have access to this content.