This paper presents a novel procedure based on first-order reliability method (FORM) for structural reliability analysis in the presence of random parameters and interval uncertain parameters. In the proposed formulation, the hybrid problem is reduced to standard reliability problems, where the limit state functions are defined only in terms of the random variables. Monte Carlo simulation (MCS) for hybrid reliability analysis (HRA) is presented, and it is shown that it requires a tremendous computational effort; FORM for HRA is more efficient but still demanding. The computational cost is significantly reduced through a simplified procedure, which gives good approximations of the design points, by requiring only three classical FORMs and one interval analysis (IA), developed herein through an optimization procedure. FORM for HRA and its simplified formulation achieve a much improved efficiency than MCS by several orders of magnitude, and it can thus be applied to real-world engineering problems. Representative examples of stochastic dynamic analysis and performance-based engineering are presented.

References

References
1.
Madsen
,
H. O.
,
Krenk
,
S.
, and
Lind
,
N. C.
,
1986
,
Methods of Structural Safety
,
Prentice-Hall
,
Upper Saddle River, NJ
.
2.
Ditlevsen
,
O.
, and
Madsen
,
H. O.
,
1996
,
Structural Reliability Methods
,
Wiley
,
New York
.
3.
Melchers
,
R. E.
,
1999
,
Structural Reliability, Analysis and Prediction
,
Wiley & Sons
,
New York
.
4.
Sexsmith
,
R. G.
,
1999
, “
Probability-Based Safety Analysis—Value and Drawbacks
,”
Struct. Saf.
,
21
(
4
), pp. 
303
310
.10.1016/S0167-4730(99)00026-0
5.
Elishakoff
,
I.
,
1991
, “Essay on Reliability Index, Probabilistic Interpretation of Safety Factor and Convex Models of Uncertainty,”
Reliability Problems: General Principles and Applications in Mechanics of Solids and Structures
,
F.
Casciati
,
J. B.
Roberts
, eds.,
Springer-Verlag
,
Vienna, Austria
.
6.
Ben-Haim
,
Y.
,
1996
,
Robust Reliability in the Mechanical Sciences
,
Springer-Verlag
,
Berlin
.
7.
Vapnik
,
V.
,
2000
,
The Nature of Statistical Learning Theory
,
Springer-Verlag
,
New York
.
8.
Hurtado
,
J. E.
, and
Alvarez
,
D. A.
,
2012
, “
The Encounter of Interval and Probabilistic Approaches to Structural Reliability at the Design Point
,”
Comput. Methods Appl. Mech. Eng.
,
225–228
, pp. 
74
94
.10.1016/j.cma.2012.03.020
9.
Ben-Haim
,
Y.
, and
Elishakoff
,
I.
,
1990
,
Convex Models of Uncertainties in Applied Mechanics
,
Elsevier Science
,
Amsterdam
.
10.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics
,”
Phys Rev
,
106
(
4
), pp. 
620
630
.10.1103/PhysRev.106.620
11.
Kapur
,
J. N.
, and
Kesavan
,
H. K.
,
1992
,
Entropy Optimization Principles With Applications
,
Academic Press
,
San Diego, CA
.
12.
Moens
,
D.
, and
Vandepitte
,
D.
,
2005
, “
A Survey of Non-Probabilistic Uncertainty Treatment in Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
12–16
), pp. 
1527
1555
13.
Goldstein
,
M.
,
2006
, “
Subjective Bayesian Analyses: Principles and Practice
,”
Int. Soc. Bayesian Anal.
,
1
(
3
), pp. 
403
420
14.
Guyonnet
,
D.
,
Bourgigne
,
B.
,
Dubois
,
D.
,
Fargier
,
H.
,
Come
,
B.
, and
Chilles
,
J.
,
2003
, “
Hybrid Approach for Addressing Uncertainty in Risk Assessment
,”
J. Environ. Eng.
,
129
(
1
), pp. 
68
78
15.
Zhang
,
M. Q.
,
Beer
,
M.
,
Quek
,
S. T.
, and
Choo
,
Y. S.
,
2010
, “
Comparison of Uncertainty Models in Reliability Analysis of Offshore Structures Under Marine Corrosion
,”
Struct. Saf.
,
32
(
6
), pp. 
425
432
16.
Neumaier
,
A.
,
1990
,
Interval Methods for Systems of Equations
,
Cambridge University Press
,
Cambridge
.
17.
Rump
,
S. M.
,
1992
, “
On the Solutions of Interval Linear Systems
,”
Computing
,
48
(
3
), pp. 
337
353
18.
Rump
,
S. M.
,
1999
,
INTLAB—INTerval LABoratory
,
Kluwer Academic
,
Dordrecht
.
19.
Hansen
,
E.
, and
Walster
,
G. W.
,
2004
,
Global Optimization Using Interval Analysis
,
Marcel Dekker
,
New York
.
20.
Moore
,
R. E.
,
Keafort
,
R. B.
, and
Cloud
,
M. J.
,
2009
,
Introduction to Interval Analysis
,
SIAM
,
New York
.
21.
Muhanna
,
R. L.
, and
Mullen
,
R. L.
,
2001
, “
Uncertainty in Mechanics: Problems-Interval-Based-Approach
,”
J. Eng. Mech.
,
127
(
6
), pp. 
557
566
.
22.
Qiu
,
Z.
, and
Elishakoof
,
I.
,
1998
, “
Antioptimization of Structures With Large Uncertain-But-Non-Random Parameters Via Interval Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
152
(
3–4
), pp. 
361
372
.
23.
Moller
,
B.
,
Graf
,
W.
, and
Beer
,
M.
,
2000
, “
Fuzzy Structural Analysis Using Alpha-Level Optimization
,”
Comput. Mech.
,
26
(
6
), pp. 
547
565
.
24.
Moens
,
D.
, and
Vandepitte
,
D.
,
2007
, “
Interval Sensitivity Theory and Its Application to Frequency Response Envelope Analysis of Uncertain Structures
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
21–24
), pp. 
2486
2496
.
25.
Degrauwe
,
D.
,
Lombaert
,
G.
, and
De Roeck
,
G.
,
2010
, “
Improving Interval Analysis of External Loads Indentified by Displacement Input With Uncertainty
,”
Comput. Struct
,
88
(
3
), pp. 
247
254
.
26.
Impollonia
,
N.
, and
Muscolino
,
G.
,
2011
, “
Interval Analysis of Structures With Uncertain-But-Bounded Axial Stiffness
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
21
), pp. 
1945
1962
.
27.
Muscolino
,
G.
, and
Sofi
,
A.
,
2011
, “
Response Statistics of Linear Structures With Uncertain-But-Bounded Parameters Under Gaussian Stochastic Input
,”
Int. J. Struct. Stab. Dyn.
,
11
, pp. 
775
804
.
28.
Muscolino
,
G.
, and
Sofi
,
A.
,
2012
, “
Stochastic Analysis of Structures With Uncertain-But-Bounded Parameters Via Improved Interval Analysis
,”
Probab. Eng. Mech.
,
28
, pp. 
152
163
.
29.
Muscolino
,
G.
,
Santoro
,
R.
, and
Sofi
,
A.
,
2015
, “
Explicit Reliability Sensitivities of Linear Structures With Interval Uncertainties Under Stationary Stochastic Excitation
,”
Struct. Saf.
,
52
, pp. 
219
232
.
30.
Moller
,
B.
, and
Beer
,
M.
,
2004
,
Fuzzy Randomness—Uncertainty in Civil Engineering and Computational Mechanics
,
Springer
,
Berlin
.
31.
Guo
,
S. X.
, and
Lu
,
Z. Z.
,
2002
, “
Hybrid Probabilistic and Non-Probabilistic Model of Structural Reliability
,”
J. Mech. Strength
,
24
(
4
), pp. 
524
526
.
32.
Du
,
X.
,
2008
, “
Unified Uncertainty Analysis by the First Order Reliability Method
,”
J. Mech. Des.
,
130
(
9
), pp. 
1
10
.
33.
Guo
,
J.
, and
Du
,
X. P.
,
2009
, “
Reliability Sensitivity Analysis With Random and Interval Variables
,”
Int. J. Numer. Methods Eng
.,
78
(
13
), pp. 
1585
1617
.
34.
Luo
,
Y. J.
,
Kang
,
Z.
, and
Alex
,
L.
,
2009
, “
Structural Reliability Assessment Based on Probability and Convex Set Mixed Model
,”
Comput. Struct
.,
87
(
21
), pp. 
1408
1415
.
35.
Alvarez
,
D. A.
, and
Hurtado
,
J. E.
,
2014
, “
An Efficient Method for the Estimation of Structural Reliability Intervals With Random Sets, Dependence Modelling and Uncertain Input
,”
Comput. Struct.
,
142
, pp. 
54
63
.
36.
Au
,
S. K.
, and
Beck
,
J. L.
,
2001
, “
Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation
,”
Probab. Eng. Mech.
,
16
, pp. 
263
277
.
37.
Rackwitz
,
R
,
2001
, “
Reliability Analysis—A Review and Some Perspectives
,”
Struct. Saf.
,
23
(
4
), pp. 
365
395
.
38.
Bucher
,
C.
,
2009
, “
Asymptotic Sampling for High-Dimensional Reliability Analysis
,”
Probab. Eng. Mech.
,
24
, pp. 
504
510
.
39.
Hurtado
,
J. E.
,
2012
, “
Dimensionality Reduction and Visualization of Structural Reliability Problems Using Polar Features
,”
Probab. Eng. Mech.
,
29
, pp. 
16
31
.
40.
Kurtz
,
N.
, and
Song
,
J.
,
2013
, “
Cross-Entropy-Based Adaptive Importance Sampling Using Gaussian Mixture
,”
Struct. Saf.
,
42
, pp. 
35
44
.
41.
De Angelis
,
M.
,
Patelli
,
E.
, and
Beer
,
M.
,
2015
, “
Advanced Line Sampling for Efficient Robust Reliability Analysis
,”
Struct. Saf.
,
52
, pp. 
170
182
.
42.
Alibrandi
,
U.
,
Alani
,
A.
, and
Koh
,
C. G.
,
2015
, “
Implications of High-Dimensional Geometry for Structural Reliability Analysis and a Novel Linear Response Surface Method Based on SVM
,”
Int. J. Comput. Methods
,
12
(
4
), (online ahead of print).10.1142/S0219876215400162
43.
Liu
,
P.-L.
, and
Der Kiureghian
,
A.
,
1991
, “
Optimization Algorithms for Structural Reliability
,”
Struct. Saf.
,
9
(
3
), pp. 
161
177
.10.1016/0167-4730(91)90041-7
44.
Zhang
,
Y.
, and
Der Kiureghian
,
A.
,
1995
, “Two Improved Algorithms for Reliability Analysis,”
Reliability and Optimization of Structural Systems
,
Proceedings of the 6th IFIP WG 7.5 Working Conference on Reliability and Optimization of Structural Systems
,
Assisi, Italy
,
Springer
,
New York
.
45.
Fujimura
,
K.
, and
Der Kiureghian
,
A.
,
2007
, “
Tail-Equivalent Linearization Method for Nonlinear Random Vibration
,”
Probab. Eng. Mech.
,
22
(
1
), pp. 
63
76
.
46.
Ellingwood
,
B. R.
,
2001
, “
Earthquake Risk Assessment of Building Structures
,”
Reliab. Eng. Syst. Saf.
,
74
(
3
), pp. 
251
262
.
47.
Koduru
,
S.D.
, and
Haukaas
,
T.
,
2010
, “
Probabilistic Seismic Loss Assessment of a Vancouver High-Rise Building
,”
J. Struct. Eng.
,
136
(
3
), pp. 
235
245
.
48.
Rice
,
S. O.
,
1954
, “Mathematical Analysis of Random Noise,”
Selected Papers on Noise and Stochastic Processes
,
Dover Publications
,
New York
.
49.
Alibrandi
,
U.
,
2014
, “
A Response Surface Method for Stochastic Dynamic Analysis
,”
Reliab. Eng. Syst. Saf.
,
126
, pp. 
44
53
.
50.
Alibrandi
,
U.
,
2015
, “
Tail Equivalent Linearization Methods for Seismic Response Spectrum Analysis
,”
1st ECCOMAS Thematic Conference on International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2015), May 25–27
, Crete, Greece (to be published).
51.
Kanai
,
K.
,
1957
, “
Semi-Empirical Formula for the Seismic Characteristics of the Ground
,”
Bull. Earthquake Res. Inst.
,
35
(
2
), pp. 
309
325
.
52.
Tajimi
,
H.
,
1960
, “
A Statistical Method of Determining the Maximum Response of a Building Structure During an Earthquake
,”
Proceedingsof the 2nd International Conference Earthquake Engineering
, Vol. 
2
,
Tokyo
, pp. 
781
797
.
53.
Buchholdt
,
H.
,
1997
,
Structural Dynamics for Engineering
,
Thomas Telford
,
London
.
54.
Woodhouse
,
J.
,
1998
, “
Linear Damping Models for Structural Vibration
,”
J. Sound Vib.
,
215
(
3
), pp. 
547
569
.
55.
Adhikari
,
S.
, and
Woodhouse
,
J.
,
2003
, “
Quantification of Non-Viscous Damping in Discrete Linear Systems
,”
J. Sound Vib.
,
260
(
3
), pp. 
499
518
.
56.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp. 
112
147
.
57.
Haukaas
,
T.
,
2008
, “
Unified Reliability and Design Optimization for Earthquake Engineering
,”
Probab. Eng. Mech.
,
23
(
4
), pp. 
471
481
.
You do not currently have access to this content.