Interval variables are commonly encountered in design, especially in the early design stages when data are limited. Thus, reliability analysis (RA) should deal with both interval and random variables and then predict the lower and upper bounds of reliability. The analysis is computationally intensive, because the global extreme values of a limit-state function with respect to interval variables must be obtained during the RA. In this work, a random field approach is proposed to reduce the computational cost with two major developments. The first development is the treatment of a response variable as a random field, which is spatially correlated at different locations of the interval variables. Equivalent reliability bounds are defined from a random field perspective. The definitions can avoid the direct use of the extreme values of the response. The second development is the employment of the first-order reliability method (FORM) to verify the feasibility of the random field modeling. This development results in a new random field method based on FORM. The new method converts a general response variable into a Gaussian field at its limit state and then builds surrogate models for the autocorrelation function and reliability index function with respect to interval variables. Then, Monte Carlo simulation is employed to estimate the reliability bounds without calling the original limit-state function. Good efficiency and accuracy are demonstrated through three examples.

References

References
1.
Du
,
X.
,
Sudjianto
,
A.
, and
Huang
,
B.
,
2005
, “
Reliability-Based Design With the Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1068
1076
.10.1115/1.1992510
2.
Hu
,
Z.
, and
Du
,
X.
,
2012
, “
Reliability Analysis for Hydrokinetic Turbine Blades
,”
Renewable Energy
,
48
(
1
), pp.
251
262
.10.1016/j.renene.2012.05.002
3.
Qiu
,
Z.
, and
Wang
,
J.
,
2010
, “
The Interval Estimation of Reliability for Probabilistic and Non-Probabilistic Hybrid Structural System
,”
Eng. Fail. Anal.
,
17
(
5
), pp.
1142
1154
.10.1016/j.engfailanal.2010.01.010
4.
Du
,
L.
,
Youn
,
B. D.
,
Gorsich
,
D.
, and
Choi
,
K.
,
2006
, “
Possibility-Based Design Optimization Method for Design Problems With Both Statistical and Fuzzy Input Data
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
928
935
.10.1115/1.2204972
5.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
,
2006
, “
A Design Optimization Method Using Evidence Theory
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
901
908
.10.1115/1.2204970
6.
Pascual
,
B.
, and
Adhikari
,
S.
,
2012
, “
Combined Parametric–Nonparametric Uncertainty Quantification Using Random Matrix Theory and Polynomial Chaos Expansion
,”
Comput. Struct.
,
112
(
1
), pp.
364
379
.
7.
Soize
,
C.
,
2005
, “
Random Matrix Theory for Modeling Uncertainties in Computational Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
12
), pp.
1333
1366
.10.1016/j.cma.2004.06.038
8.
Pellissetti
,
M.
,
Capiez-Lernout
,
E.
,
Pradlwarter
,
H.
,
Soize
,
C.
, and
Schueller
,
G.
,
2008
, “
Reliability Analysis of a Satellite Structure With a Parametric and a Non-Parametric Probabilistic Model
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
2
), pp.
344
357
.10.1016/j.cma.2008.08.004
9.
Zaman
,
K.
,
Rangavajhala
,
S.
,
Mcdonald
,
M. P.
, and
Mahadevan
,
S.
,
2011
, “
A Probabilistic Approach for Representation of Interval Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
96
(
1
), pp.
117
130
.10.1016/j.ress.2010.07.012
10.
Xiao
,
N.-C.
,
Huang
,
H.-Z.
,
Wang
,
Z.
,
Pang
,
Y.
, and
He
,
L.
,
2011
, “
Reliability Sensitivity Analysis for Structural Systems in Interval Probability Form
,”
Struct. Multidiscip. Optim.
,
44
(
5
), pp.
691
705
.10.1007/s00158-011-0652-9
11.
Bayarri
,
M. J.
,
Berger
,
J. O.
,
Paulo
,
R.
,
Sacks
,
J.
,
Cafeo
,
J. A.
,
Cavendish
,
J.
,
Lin
,
C.-H.
, and
Tu
,
J.
,
2007
, “
A Framework for Validation of Computer Models
,”
Technometrics
,
49
(
2
), pp .
138
154
.10.1198/004017007000000092
12.
Jiang
,
C.
,
Lu
,
G.
,
Han
,
X.
, and
Liu
,
L.
,
2012
, “
A New Reliability Analysis Method for Uncertain Structures With Random and Interval Variables
,”
Int. J. Mech. Mater. Des.
,
8
(
2
), pp.
169
182
.10.1007/s10999-012-9184-8
13.
Jiang
,
C.
,
Han
,
X.
,
Li
,
W.
,
Liu
,
J.
, and
Zhang
,
Z.
,
2012
, “
A Hybrid Reliability Approach Based on Probability and Interval for Uncertain Structures
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031001
.10.1115/1.4005595
14.
Adduri
,
P. R.
, and
Penmetsa
,
R. C.
,
2007
, “
Bounds on Structural System Reliability in the Presence of Interval Variables
,”
Comput. Struct.
,
85
(
5
), pp.
320
329
.10.1016/j.compstruc.2006.10.012
15.
Luo
,
Y.
,
Kang
,
Z.
, and
Li
,
A.
,
2009
, “
Structural Reliability Assessment Based on Probability and Convex Set Mixed Model
,”
Comput. Struct.
,
87
(
21
), pp.
1408
1415
.10.1016/j.compstruc.2009.06.001
16.
Kang
,
Z.
, and
Luo
,
Y.
,
2010
, “
Reliability-Based Structural Optimization With Probability and Convex Set Hybrid Models
,”
Struct. Multidiscip. Optim.
,
42
(
1
), pp.
89
102
.10.1007/s00158-009-0461-6
17.
Penmetsa
,
R. C.
, and
Grandhi
,
R. V.
,
2002
, “
Efficient Estimation of Structural Reliability for Problems With Uncertain Intervals
,”
Comput. Struct.
,
80
(
12
), pp.
1103
1112
.10.1016/S0045-7949(02)00069-X
18.
Zhang
,
H.
,
Mullen
,
R. L.
, and
Muhanna
,
R. L.
,
2010
, “
Interval Monte Carlo Methods for Structural Reliability
,”
Struct. Saf.
,
32
(
3
), pp.
183
190
.10.1016/j.strusafe.2010.01.001
19.
Du
,
X.
,
Sudjianto
,
A.
, and
Huang
,
B.
,
2005
, “
Reliability-Based Design With the Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1068
1076
.10.1115/1.1992510
20.
Guo
,
J.
, and
Du
,
X.
,
2010
, “
Reliability Analysis for Multidisciplinary Systems With Random and Interval Variables
,”
AIAA J.
,
48
(
1
), pp.
82
91
.10.2514/1.39696
21.
Choi
,
S.-K.
,
Grandhi
,
R. V.
, and
Canfield
,
R. A.
,
2007
,
Reliability-Based Structural Design
,
Springer
,
London
.
22.
Zhuang
,
X.
, and
Pan
,
R.
,
2012
, “
Epistemic Uncertainty in Reliability-Based Design Optimization
,”
Proceedings of Reliability and Maintainability Symposium (RAMS)
,
Reno, NV
,
Jan. 23–26
,
IEEE
, pp.
1
6
.
23.
Li
,
G.
,
Lu
,
Z.
,
Lu
,
Z.
, and
Xu
,
J.
,
2014
, “
Regional Sensitivity Analysis of Aleatory and Epistemic Uncertainties on Failure Probability
,”
Mech. Syst. Signal Process.
,
46
(
2
), pp.
209
226
.10.1016/j.ymssp.2014.02.006
24.
Yoo
,
D.
, and
Lee
,
I.
,
2013
, “
Sampling-Based Approach for Design Optimization in the Presence of Interval Variables
,”
Struct. Multidiscip. Optim.
,
49
(
2
), pp.
253
266
.
25.
Zhang
,
Y.
, and
Hosder
,
S.
,
2013
, “
Robust Design Optimization Under Mixed Uncertainties With Stochastic Expansions
,”
ASME J. Mech. Des.
,
135
(
8
), p.
081005
.10.1115/1.4024230
26.
Adler
,
R. J.
, and
Taylor
,
J. E.
,
2009
,
Random Fields and Geometry
,
Springer
,
New York
.
27.
Sudret
,
B.
, and
Der Kiureghian
,
A.
,
2000
, “
Stochastic Finite Element Methods and Reliability: A State-of-the-Art Report
,”
Department of Civil and Environmental Engineering, University of California
,
Berkeley, CA
.
28.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
First Order Reliability Method for Time-Variant Problems Using Series Expansions
,”
Struct. Multidiscip. Optim.
,
51
(
1
), pp.
1
21
.10.1007/s00158-014-1132-9
29.
Li
,
C.-C.
, and
Der Kiureghian
,
A.
,
1993
, “
Optimal Discretization of Random Fields
,”
J. Eng. Mech.
,
119
(
6
), pp.
1136
1154
.10.1061/(ASCE)0733-9399(1993)119:6(1136)
30.
Du
,
X.
, and
Hu
,
Z.
,
2012
, “
First Order Reliability Method With Truncated Random Variables
,”
ASME J. Mech. Des.
,
134
(
9
), p.
091005
.10.1115/1.4007150
31.
Der Kiureghian
,
A.
, and
Dakessian
,
T.
,
1998
, “
Multiple Design Points in First and Second-Order Reliability
,”
Struct. Saf.
,
20
(
1
), pp.
37
49
.10.1016/S0167-4730(97)00026-X
32.
Der Kiureghian
,
A.
,
Zhang
,
Y.
, and
Li
,
C.-C.
,
1994
, “
Inverse Reliability Problem
,”
J. Eng. Mech.
,
120
(
5
), pp.
1154
1159
.10.1061/(ASCE)0733-9399(1994)120:5(1154)
33.
Sudret
,
B.
, and
Der Kiureghian
,
A.
,
2002
, “
Comparison of Finite Element Reliability Methods
,”
Probab. Eng. Mech.
,
17
(
4
), pp.
337
348
.10.1016/S0266-8920(02)00031-0
34.
Kbiob
,
D.
,
1951
, “
A
Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand
,”
J. Chem. Met. Min. Soc. S. Afr
,
3
(
1
), pp.
201
215
.
35.
Kaymaz
,
I.
,
2005
, “
Application of Kriging Method to Structural Reliability Problems
,”
Struct. Saf.
,
27
(
2
), pp.
133
151
.10.1016/j.strusafe.2004.09.001
36.
Xiong
,
Y.
,
Chen
,
W.
,
Apley
,
D.
, and
Ding
,
X.
,
2007
, “
A Non-Stationary Covariance-Based Kriging Method for Metamodelling in Engineering Design
,”
Int. J. Numer. Methods Eng.
,
71
(
6
), pp.
733
756
.10.1002/(ISSN)1097-0207
37.
Kleijnen
,
J. P.
,
2009
, “
Kriging Metamodeling in Simulation: A Review
,”
Eur. J. Oper. Res.
,
192
(
3
), pp.
707
716
.10.1016/j.ejor.2007.10.013
38.
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
,
The MIT Press
,
Cambridge, MA
, pp.
1
20
.
39.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W.
,
2003
,
The Design and Analysis of Computer Experiments
,
Springer
,
New York
.
40.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
, “
Dace-a Matlab Kriging Toolbox, Version 2.0
,” Technical Report.
41.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
Ak-Mcs: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.10.1016/j.strusafe.2011.01.002
42.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Swiler
,
L. P.
,
Mahadevan
,
S.
, and
Mcfarland
,
J. M.
,
2008
, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
,”
AIAA J.
,
46
(
10
), pp.
2459
2468
.10.2514/1.34321
43.
Vitter
,
J. S.
,
1985
, “
Random Sampling with a Reservoir
,”
ACM Trans. Math. Software (TOMS)
,
11
(
1
), pp.
37
57
.10.1145/3147.3165
44.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.10.1016/S0951-8320(03)00058-9
45.
Hammersley
,
J. M.
,
1960
, “
Monte Carlo Methods for Solving Multivariable Problems
,”
Ann. N. Y. Acad. Sci.
,
86
(
3
), pp.
844
874
.10.1111/j.1749-6632.1960.tb42846.x
46.
Björkman
,
M.
, and
Holmström
,
K.
,
1999
, “
Global Optimization Using Direct Algorithm in Matlab
,”
Adv. Model. Optim.
,
1
(
2
), pp.
17
37
47.
Au
,
F.
,
Cheng
,
Y.
,
Tham
,
L.
, and
Zeng
,
G.
,
2003
, “
Robust Design of Structures Using Convex Models
,”
Comput. Struct.
,
81
(
28
), pp.
2611
2619
.10.1016/S0045-7949(03)00322-5
You do not currently have access to this content.