The present study focuses on the development of nonlinear interval finite elements (NIFEM) for beam and frame problems. Three constitutive models have been used in the present study, viz., bilinear, Ramberg–Osgood, and cubic models, to illustrate the development of NIFEM. An interval finite element method (IFEM) has been developed to handle load, material, and geometric uncertainties that are introduced in a form of interval numbers defined by their lower and upper bounds. However, the scope of the previous methods was limited to linear problems. The present work introduces an IFEM formulation for problems involving material nonlinearity under interval material parameters and loads. The algorithm is based on the previously developed high-accuracy interval solutions. An iterative method that generates successive approximations to the secant stiffness is introduced. Examples are presented to illustrate the behavior of the formulation. It is shown that bounding the response of nonlinear structures for a large number of load combinations under uncertain yield stress can be computed at a reasonable computational cost.

References

References
1.
Koyluoglu
,
H. U.
,
Cakmak
,
A. S.
, and
Nielsen
,
S. R. K.
,
1995
, “
Interval Algebra to Deal With Pattern Loading and Structural Uncertainty
,”
J. Eng. Mech.-ASCE
,
121
(
11
), pp.
1149
1157
.
2.
Muhanna
,
R. L.
, and
Mullen
,
R. L.
,
1995
, “
Development of Interval Based Methods for Fuzziness in Continuum Mechanics
,”
Proceedings of ISUMA-NAFIPS’95
,
Sept. 17–20
,
IEEE Computer Society Press
,
Los Alamos, NM
, pp.
145
150
.
3.
Nakagiri
,
S.
, and
Yoshikawa
,
N.
,
1996
, “
Finite Element Interval Estimation by Convex Model
,”
Proceedings of 7th ASCE EMD/STD Joint Specialty, Conference on Probabilistic Mechanics and Structural Reliability
,
Aug. 7–9
,
WPI, MA
.
4.
Rao
,
S. S.
, and
Sawyer
,
P.
,
1995
, “
Fuzzy Finite Element Approach for Analysis of Imprecisely Defined Systems
,”
AIAA J.
,
33
(
12
), pp.
2364
2370
.
5.
Rao
,
S. S.
, and
Berke
,
L.
,
1997
, “
Analysis of Uncertain Structural Systems Using Interval Analysis
,”
AIAA J.
,
35
(
4
), pp.
727
735
.
6.
Rao
,
S. S.
, and
Chen
,
Li.
,
1998
, “
Numerical Solution of Fuzzy Linear Equations in Engineering Analysis
,”
Int. J. Numer. Methods Eng.
,
43
(
3
), pp.
391
408
.
7.
Muhanna
,
R. L.
, and
Mullen
,
R. L.
,
2001
, “
Uncertainty in Mechanics Problems-Interval-Based Approach
,”
J. Eng. Mech.-ASCE
,
127
(
6
), pp.
557
566
.
8.
Neumaier
,
A.
, and
Pownuk
,
A.
,
2007
, “
Linear Systems With Large Uncertainties, With Applications to Truss Structures
,”
Reliable Comput.
,
13
(
2
), pp.
149
172
.
9.
Impollonia
,
N.
, and
Muscolino
,
G.
,
2011
, “
Interval Analysis of Structures With Uncertain-but-Bounded Axial Stiffness
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
21
), pp.
1945
1962
.
10.
Guo
S. X.
, and
Lu
Z. Z.
,
2001
, “
Interval Arithmetic and Static Interval Finite Element Method
,”
Appl. Math. Mech.
,
20
(
12
), pp.
1390
1396
.
11.
Qiu
,
Z. P.
,
Wang
,
X. J.
, and
Chen
,
J. Y.
,
2006
, “
Exact Bounds for the Static Response Set of Structures With Uncertain-but-Bounded Parameters
,”
Int. J. Solids Struct.
,
43
, pp.
6574
6593
.
12.
Verhaeghe
,
W.
,
Munck
,
M. D.
,
Desmet
,
W.
,
Vandepitte
,
D.
, and
Moens
,
D.
,
2010
, “
A Fuzzy Finite Element Analysis Technique for Structural Static Analysis Based on Interval Fields
,”
Proceedings of the 4th International Workshop on Reliable Engineering Computing
,
M.
Beer
,
R. L.
Muhanna
, and
R. L.
Mullen
, eds.,
Singapore
, pp. 
117
128
.
13.
Muhanna
,
R. L.
,
Mullen
,
R. L.
, and
Rama Rao
,
M. V.
,
2012
, “
Nonlinear Interval Finite Element for Structural Mechanics Problems
,”
Proceedings of the International Conference on Reliable Engineering Computing “Practical Applications and Practical Challenges
,”
Brno, Czech Republic
,
Jun. 13–15
.
14.
Mallet
,
R. H.
, and
Maracal
,
P. V.
,
1968
, “
Finite Element Analysis of Nonlinear Structures
,”
Proc. ASCE, J. Struct. Div.
,
94
(
ST9
), pp.
2081
2185
.
15.
Oden
,
J. T.
,
1967
, “
Numerical Formulation of Nonlinear Elasticity Problems
,”
J. Struct. Div.
,
93
(
3
), pp.
235
356
.
16.
Oden
,
J. T.
,
1969
, “
Finite Element Applications in Non-Linear Structural Analysis
,”
Proceedings of the Conference on Finite Element Methods
,
Vanderbilt University
,
Tennessee
.
17.
Zienkiewicz
,
O. C.
,
Valliapan
,
S.
, and
King
,
I. P.
,
1969
, “
Elasto-Plastic Solutions of Engineering Problems. Initial Stress, Finite Element Approach
,”
Int. J. Num. Methods Eng.
,
1
(
1
), pp.
75
100
.
18.
Haisler
,
W. E.
,
Stricklin
,
J. E.
, and
Stebblins
,
F. J.
,
1971
, “
Development and Evaluation of Solution Procedures for Geometrically Non-Linear Structural Analysis by the Discrete Stiffness Method
,”
Proceedings of the AIAA-ASME 12th Structure, Structural Dynamics Conference
,
Anaheim, CA
.
19.
Sabir
,
A. B.
, and
Lock
,
A. C.
,
1972
, “
The Application of Finite Elements to the Large-Deflection Geometrically Nonlinear Behavior of Cylindrical Shells
,”
Proceedings of International Conference on Variational Methods in Engineering
,
C. A.
Brebbia
, and
H.
Tottenham
, eds.,
Southampton University Press
,
Southampton, UK
, pp.
7
67
.
20.
Wright
,
E. W.
, and
Gaylord
,
E. H.
,
1968
, “
Analysis of Unbraced Multistory Steel Rigid Frames
,”
Int. J. Struct. Div.-ASCE
,
94
(
5
), pp.
1143
1163
.
21.
Bergan
,
P. G.
, and
Soreide
,
T. H.
,
1978
, “
Solution of Large Displacement and Instability Problems Using the Current Stiffness Parameter
,”
Proceedings of the Finite Element in Nonlinear Mechanics
,
P. G.
Bergan
,
P. K.
Larsen
,
H.
Pettersson
,
A.
Samuelsson
,
T. H.
Søreide
, and
N. E.
Wiberg
, eds.,
Tapir Press
,
Trondheim, Norway
, pp.
647
669
.
22.
Bergan
,
P.G.
,
Horrigmoe
,
G.
,
Krakeland
,
B.
, and
Soreide
,
T. H.
,
1978
, “
Solution Techniques for Nonlinear Finite Element Problems
,”
Int. J. Numer. Methods Eng.
,
12
(
11
), pp.
1677
1696
.
23.
Fox
,
R. L.
, and
Stanton
,
E. L.
,
1968
, “
Developments in Structural Analysis by Direct Energy Minimization
,”
AIAA J.
,
6
(
6
), pp.
I036
I042
.
24.
Luenberger
,
D. G.
,
1984
,
Linear and Nonlinear Programming
,
2nd ed.
,
Addison-Wesley
,
Reading, MA
.
25.
Matthies
,
H.
and
Strang
,
G.
,
1979
, “
The Solution of Nonlinear Finite Element Equations
,”
Int. J. Numer. Methods Eng.
,
14
(
11
), pp.
1613
1626
.
26.
Crisfield
,
M. A.
,
1991
,
Non-linear Finite Element Analysis of Solids and Structures
,
Wiley
,
Chichester, UK
.
27.
Wriggers
,
P.
,
2008
,
Nonlinear Finite Element Methods
,
Springer-Verlag
,
Berlin, Heidelberg
.
28.
Riks
,
E.
,
1972
, “
The Application of Newton’s Method to the Problem of Elastic Stability
,”
ASME J. Appl. Mech.
,
39
(
4
), pp.
1060
1065
.10.1115/1.3422829
29.
Wempner
,
G. A.
,
1971
, “
Discrete Approximation Related to Nonlinear Theories of Solids
,”
Int. J. Solids Struct.
,
7
, pp.
1581
1599
.
30.
Keller
,
H. B.
,
1977
, “
Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems
,”
Application of Bifurcation Theory
,
P.
Rabinowitz
, ed., pp.
359
384
,
Academic Press
,
New York
.
31.
Ramm
,
E.
,
1981
, “
Strategies for Tracing the Nonlinear Response Near Limit Points
,”
Nonlinear Finite Element Analysis in Structural Mechanics
,
W.
Wunderlich
,
E.
Stein
, and
K. J.
Bathe
, eds.,
Springer
,
Berlin, Heidelberg, New York
.
32.
Crisfield
,
M. A.
,
1981
, “
A Fast Incremental/Iterative Solution Procedure that Handles Snap Through
,”
Comput. Struct.
,
13
(
1–3
), pp. 
55
62
.
33.
Schweizerhof
,
K.
, and
Wriggers
,
P.
,
1986
, “
Consistent Linearization for Path Following Methods in Nonlinear Fe-Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
59
(
3
), pp. 
261
279
.
34.
Wagner
,
W.
,
1991
, “
Zur Behandlung von Stabilit¨atsproblemen mit der Methode der Finiten Elemente
,” ,
Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover
.
35.
Riks
,
E.
,
1984
, “
Some Computational Aspects of Stability Analysis of Nonlinear Structures
,”
Comput. Methods Appl. Mech. Eng.
,
47
(
3
), pp.
219
260
.
36.
Wagner
,
W.
, and
Wagner
,
P.
,
1988
, “
A Simple Method for the Calculation of Secondary Branches
,”
Eng. Comput.
,
5
(
2
), pp.
103
109
.
37.
Crisfield
,
M. A.
, and
Shi
,
J.
,
1991
, “
A Review of Solution Procedures and Path-Following Techniques in Relation to the Non-Linear Finite Element Analysis of Structures
,”
Computational Methods in Nonlinear Mechanics
,
P.
Wriggers
, and
W.
Wagner
, eds.,
Springer
,
Berlin
.
38.
Lin
,
Y.
,
Gwaltney
,
C. R.
, and
Stadtherr
,
M. A.
,
2006
, “
Reliable Modeling and Optimization for Chemical Engineering Applications: Interval Analysis Approach
,”
Reliable Comput.
,
12
(
6
), pp.
427
450
.
39.
Enszer
,
J. A.
,
Lin
,
Y.
,
Ferson
,
S.
,
Corliss
,
G. F.
, and
Stadtherr
,
M. A.
,
2011
, “
Probability Bounds Analysis for Nonlinear Dynamic Process Models
,”
AIChE J.
,
57
(
2
), pp.
404
422
.
40.
Rama Rao
,
M. V.
,
Mullen
,
R. L.
, and
Muhanna
,
R. L.
,
2011
, “
A New Interval Finite Element Formulation With the Same Accuracy in Primary and Derived Variables
,”
Int. J. Reliab. Saf.
,
5
(
3/4
), pp.
336
357
.
41.
Muhanna
,
R. L.
,
Zhang
,
H.
, and
Mullen
,
R. L.
,
2007
, “
Interval Finite Element as a Basis for Generalized Models of Uncertainty in Engineering Mechanics
,”
Reliable Comput.
,
13
(
2
), pp.
173
194
.
42.
Zhang
,
H.
,
2005
, “
Nondeterministic Linear Static Finite Element Analysis: An Interval Approach
,” Ph.D. Dissertation,
Georgia Institute of Technology, School of Civil and Environmental Engineering
.
43.
Moore
,
R. E.
,
1966
,
Interval Analysis
,
Prentice-Hall
,
Elingwood Cliffs, NJ
.
44.
Neumaier
,
A.
,
1990
,
Interval Methods for Systems of Equations
,
Cambridge University Press
,
Cambridge
.
45.
Sun Microsystems
,
2002
, “
Interval Arithmetic in High Performance Technical Computing
,”
Sun microsystems
,
Santa Clara
(A WhitePaper).
46.
Knüppel
,
O.
,
1994
, “
PROFIL/BIAS—A Fast Interval Library
,”
Computing
,
53
, pp.
277
287
.
47.
Rump
.,
S. M.
,
1999
, “
INTLAB—INTerval LABoratory
,”
Developments in Reliable Computing
,
T.
Csendes
, ed.,
Kluwer Academic Publishers
,
Dordrecht
, pp.
77
104
.
48.
Dessombz
,
O.
,
Thouverez
,
F.
,
Laîné
,
J.-P.
, and
Jézéquel
,
L.
,
2001
, “
Analysis of Mechanical Systems Using Interval Computations Applied to Finite Elements Methods
,”
J. Sound. Vib.
,
238
(
5
), pp.
949
968
(Engineering Computations, 5, 103–110 (1988)).
49.
Bauchau
,
O. A.
, and
Craig
,
J. I.
,
2009
,
Structural Analysis With Applications to Aerospace Structures
,
Springer
,
New York
.
50.
Mullen
,
R. L.
, and
Muhanna
,
R. L.
,
1999
, “
Formulation of Fuzzy Finite Element Methods for Mechanics Problems
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
14
(
2
), pp.
107
117
.
51.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2002
,
Concepts and Applications of Finite Element Analysis
,
4th ed.
,
Wiley & Sons
, Singapore.
You do not currently have access to this content.