Infrastructure decisions reflect multiple social, political, and economic aspects of society, leading to information/partial knowledge and uncertainty in many forms. Alternatives to classical probability theory may be better suited to situations involving partial information, especially when the sources and nature of the uncertainty are disparate. Methods under the umbrella of generalized information theory enhance the treatment of uncertainty by incorporating notions of belief, evidence, fuzziness, possibility, ignorance, interactivity, and linguistic information. This paper presents an overview of some of these theories and examines the use of alternate mathematical approaches in the treatment of uncertainty, with structural engineering examples.

References

References
1.
Klir
,
G. J.
,
2006
,
Uncertainty and Information Foundations of Generalized Information Theory
,
John Wiley & Sons
,
Hoboken, NJ
.
2.
Vick
,
S. G.
,
2002
,
Degrees of Belief Subjective Probability and Engineering Judgment
,
American Society of Civil Engineers (ASCE) Press
,
Reston, VA
.
3.
Dubois
,
D.
, and
Prade
,
H.
,
1988
,
Possibility Theory: An Approach to Computerized Processing of Uncertainty
,
Plenum Press
,
New York
.
4.
Klir
,
G. J.
, and
Yuan
,
B.
,
1995
,
Fuzzy Sets and Fuzzy Logic Theory and Applications
,
Prentice Hall
,
Upper Saddle River, NJ
.
5.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
,
Princeton University Press
,
Princeton, NJ
.
6.
Zadeh
,
L. A.
,
1965
, “
Fuzzy Sets
,”
Inf. Control
,
8
(
3
), pp. 
338
353
.10.1016/S0019-9958(65)90241-X
7.
Brown
,
C.B.
, and
Yao
,
J. T. P.
,
1983
, “
Fuzzy Sets and Structural Engineering
,”
J. Struct. Eng., ASCE
,
109
(
5
), pp. 
1211
1225
.
8.
Yao
,
J. T. P.
, and
Furuta
,
H.
,
1986
, “
Probabilistic Treatment of Fuzzy Events in Civil Engineering
,”
Probab. Eng. Mech.
,
1
(
1
), pp. 
58
64
.10.1016/0266-8920(86)90010-X
9.
Blockley
,
D.
,
1980
,
The Nature of Structural Design and Safety
,
John Wiley and Sons
,
Sussex
, p. 
365
.
10.
Blockley
,
D.
,
Pilsworth
,
B.
, and
Baldwin
,
J.
,
1983
, “
Measures of Uncertainty
,”
Civil Eng. Syst.
,
1
(
1
), pp. 
3
9
.
11.
Ayyub
,
B.
, and
Klir
,
G.
,
2006
,
Uncertainty Modeling and Analysis in Engineering and the Sciences
,
Taylor and Francis Group
,
Boca Raton
, p. 
400
.
12.
Klir
,
G. J.
, and
Smith
,
R. M.
,
2001
, “
On Measuring Uncertainty and Uncertainty-Based Information: Recent Developments
,”
Ann. Math. Artif. Intell.
,
32
(
1–4
), pp. 
5
33
.
13.
Jordaan
,
I.
,
2005
,
Decisions Under Uncertainty: Probabilistic Analysis for Engineering Decisions
,
Cambridge University Press
,
Cambridge
.
14.
Ang
,
A. H-S.
, and
Tang
,
W. H.
,
2007
,
Probability Concepts in Engineering Emphasis on Applications to Civil and Environmental Engineering
,
2nd ed.
,
John Wiley & Sons
,
Hoboken, NJ
.
15.
Cornell
,
C. A.
,
1968
, “
Engineering Seismic Risk Analysis
,”
Bull. Seismol. Soc. Am.
,
58
(
5
), pp. 
1583
1606
.
16.
Cornell
,
C. A.
,
1967
, “
Bounds on the Reliability of Structural Systems
,”
J. Struct. Div., ASCE
,
93
(
1
), pp. 
171
200
.
17.
Cornell
,
C. A.
,
1969
, “
A Probability-Based Structural Code
,”
ACI J.
,
66
(
1969
), pp. 
974
985
.
18.
Cornell
,
C. A.
,
1970
, “A First-Order Reliability Theory for Structural Design,”
Reliability and Codified Design
(Structural Mechanics Study, Vol. 
3
),
N. C. Lind
, ed.,
Solid Mechanics Division, University of Waterloo
,
Ontario, Canada
.
19.
Cornell
,
C. A.
,
1972
, “Implementing Probability-Based Structural Codes,”
Probabilistic Design of Reinforced Concrete Buildings
, Vol. 
SP-31
,
American Concrete Institute
,
Detroit
, pp. 
111
146
.
20.
Ang
,
A. H-S.
, and
Cornell
,
C. A.
,
1974
, “
Reliability of Structural Safety and Design
,”
J. Struct. Div., ASCE
,
100
(
ST9
), pp. 
1755
1769
.
21.
Turkstra
,
C. J.
,
1972
, “Theory of Structural Design Decisions,”
Reliability and Codified Design
(Structural Mechanics Study, Vol. 
2
),
N. C. Lind
, ed.,
Solid Mechanics Division, University of Waterloo
,
Ontario, Canada
.
22.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second-Moment Code Format
,”
J. Eng. Mech. Div., ASCE
,
100
(
1
), pp. 
111
121
.
23.
JCCS
,
1976
,
First Order Reliability Concepts for Design Codes
, Bulletin D’Information No 112, Joint Committee CEB/CECM/CIB/FIP/IABSE Structural Safety, Rűdiger Rackwitz, Coordinator.
24.
Ellingwood
,
B. R.
,
Galambos
,
T. V.
,
MacGregor
,
J. G.
, and
Cornell
,
C. A.
,
1980
,
Development of a Probability Based Load Criterion for American National Standard A58
,
National Bureau of Standards, U.S. Department of Commerce
,
Washington, DC
.
25.
Whitman
,
R. V.
,
1973
, “
Damage Probability Matrices for Prototype Buildings
,”
Massachusetts Institute of Technology Department of Civil Engineering
, Cambridge, MA, .
26.
Whitman
,
R. V.
,
Hong
,
S.
, and
Reed
,
J. W.
,
1973
, “
Damage Statistics for High-Rise Buildings in the Vicinity of the San Fernando Earthquake
,”
Massachusetts Institute of Technology Department of Civil Engineering
, Cambridge, MA, .
27.
Applied Technology Council (ATC)
,
1985
, “
Earthquake Damage Evaluation Data for California
,”
ATC
, Redwood City, CA, .
28.
National Institute of Building Sciences (NIBS)
,
1997
, “
Earthquake Loss Estimation Methodology, HAZUS Technical Manual
,”
FEMA
, Washington, DC, .
29.
Federal Emergency Management Agency (FEMA)
,
1989
,
Estimating Losses from Future Earthquakes: Panel Report and Technical Background
,”
Federal Emergency Management Agency
,
Washington, DC
, .
30.
Federal Emergency Management Agency (FEMA)
,
2000
, “
Prestandard and Commentary for the Seismic Rehabilitation of Buildings
,” Applied Technology Council, Federal Emergency Management Agency, Washington, DC.
31.
Cornell
,
A. C.
, and
Krawinkler
,
H.
,
2000
, “
Progress and Challenges in Seismic Performance Assessment
,”
PEER Center News
,
3
(
2
), pp. 
1
4
.
32.
Porter
,
K.
,
2003
, “
An Overview of PEER’s Performance-Based Earthquake Engineering Methodology
,”
Proceedings of the 9th International Conference of Applications of Statistics and Probability in Civil Engineering (ICASP9)
,
San Francisco
, July 6–9.
33.
Bulleit
,
W. M.
,
2008
, “
Uncertainty in Structural Engineering
,”
Pract. Period. Struct. Des. Constr., ASCE
,
13
(
1
), pp. 
24
30
.
34.
Melchers
,
R. E.
,
1999
,
Structural Reliability Analysis and Prediction
,
John Wiley and Sons
,
West Sussex, England
.
35.
Ayyub
,
B. M.
,
1998
,
Uncertainty Modeling and Analysis in Civil Engineering
,
CRC Press LLC
,
Boca Raton
.
36.
de Neufville
,
R.
,
2004
, “Uncertainty Management for Engineering Systems Planning and Design.”
Engineering Systems Symposium
,
Mar. 29–31
,
O. Weck
,
D. Frey
,
D. Hastings
,
R. Larson
,
D. Simichi-Levi
,
K. Oye
,
A. Weigel
, and
R. Welsch
, eds.,
Massachusetts Institute of Technology
,
Cambridge, MA
.
37.
Ross
,
T. J.
(
2010
).
Fuzzy Logic With Engineering Applications
,
3rd ed.
,
John Wiley & Sons
,
West Sussex, England
.
38.
Bezdek
,
J. C.
,
1981
,
Pattern Recognition With Fuzzy Objective Function Algorithms
,
Plenum Press
,
New York
.
39.
Bezdek
,
J. C.
,
1993
, “
Fuzzy Models—What Are They, and Why?
,”
IEEE Trans. Fuzzy Syst.
,
1
(
1
), pp. 
1
5
.10.1109/TFUZZ.1993.6027269
40.
Wang
,
Z.
, and
Klir
,
G. J.
,
2009
,
Generalized Measure Theory
, (IFSR International Series on Systems Science and Engineering, Vol. 
25
),
G. J. Klir
, ed.,
Springer Science + Business Media, LLC
,
New York
.
41.
Muscolino
,
G.
, and
Sofi
,
A.
,
2012
, “
Stochastic Analysis of Structures With Uncertain-but-Bounded Parameters via Improved Interval Analysis
,”
Probab. Eng. Mech.
,
28
(
1
), pp. 
152
163
.
42.
Muscolino
,
G.
, and
Sofi
,
A.
,
2013
, “
Bounds for the Stationary Stochastic Response of Truss Structures With Uncertain-but-Bounded Parameters
,”
Mech. Syst. Sig. Process.
,
37
(
1–2
), pp. 
163
181
10.1016/j.ymssp.2012.06.016
43.
Koyluoglu
,
H.
, and
Elishakoff
,
E.
,
1998
, “
A Comparison of Stochastic and Interval Finite Elements Applied to Shear Frames With Uncertain Stiffness Properties
,”
Comput. Struct.
,
67
(
1–3
), pp. 
91
98
.10.1016/S0045-7949(97)00160-0
44.
Elishakoff
,
I.
,
1999
,
Whys and Hows in Uncertainty Modelling
,
Springer-Verlag
,
Vienna, Austria
, p. 
393
.
45.
Ferson
,
S.
, and
Tucker
,
W.T.
,
2006
, “
Sensitivity Analysis Using Probability Bounding
,”
Reliab. Eng. Syst. Saf.
,
91
(
10–11
), pp. 
1435
1442
.10.1016/j.ress.2005.11.052
46.
Hall
,
J. W.
,
2006
, “
Uncertainty-Based Sensitivity Indices for Imprecise Probability Distributions
,”
Reliab. Eng. Syst. Saf.
,
91
(
10–11
), pp. 
1443
1451
.10.1016/j.ress.2005.11.042
47.
Beer
,
M.
,
2009
, “
Engineering Quantification of Inconsistent Information
,”
Reliab. Saf.
,
3
(
1–3
), pp. 
174
200
.
48.
Moller
,
B.
, and
Beer
,
M.
,
2004
,
Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics
,
Springer
,
New York, NY
, p. 
325
.
49.
Zadeh
,
L. A.
,
1978
, “
Fuzzy Sets as a Basis for a Theory of Possibility
,”
Fuzzy Sets Syst.
,
1
(
1
), pp. 
3
28
.10.1016/0165-0114(78)90029-5
50.
Zadeh
,
L. A.
,
1986
, “
A Simple View of the Dempster-Shafer Theory of Evidence and Its Implication for the Rule of Combination
,”
The AI Mag.
,
7
(
2
), pp. 
85
90
.
51.
Shafer
,
G.
,
1987
, “Belief Functions and Possibility Measures,”
Analysis of Fuzzy Information
, (Mathematics and Logic, Vol. 
1
),
J. C. Bezdek
, ed.,
CRC Press
,
Boca Raton, FL
.
52.
Klir
,
G. J.
, and
Folger
,
T. A.
,
1988
,
Fuzzy Sets, Uncertainty, and Information
,
Prentice Hall
,
Englewood Cliffs
.
53.
Dubois
,
D.
,
2006
, “
Possibility Theory and Statistical Reasoning
,”
Comput. Stat. Data Anal.
,
5
(
1
), pp. 
47
69
.
54.
Raufaste
,
E.
,
Neves
,
R. S.
, and
Marine
,
C.
,
2003
, “
Testing the Descriptive Validity of Possibility Theory
,”
Artif. Intell.
,
150
(
1–2
), pp. 
197
218
.
55.
Dempster
,
A. P.
,
1967
, “
Upper and Lower Probabilities Induced by a Multivalued Mapping
,”
Ann. Math. Stat.
,
38
(
2
), pp. 
325
359
.
56.
Yager
,
R. R.
, and
Liu
,
L.
,
2008
, “Classic Works of the Dempster-Shafer Theory of Belief Functions,”
Studies in Fuzziness and Soft Computing
, Vol. 
219
,
J. Kacprzyk
, ed.,
Springer
,
New York
.
57.
Dempster
,
A. P.
, and
Shafer
,
G.
,
2008
,
Foreward: Classic Works of the Dempster-Shafer Theory of Belief Functions
,
R. R. Yager
, and
L. Lieu
, eds. (Studies in Fuzziness and Soft Computing, Vol. 
219
),
J. Kacprzyk
, ed.,
Springer
,
Berlin/Heidelberg
.
58.
Shafer
,
G.
,
2012
,
A Mathematical Theory of Evidence
,
International DOI Foundation
,
Luxembourg
, http://www.glennshafer.com/books/amte.html (accessed Nov. 7, 2012).
59.
Smets
,
P.
,
1994
, “What is Dempster-Shafer’s Model?,”
Advances in the Dempster-Shafer Theory of Evidence
,
John Wiley and Sons
,
New York
, pp. 
5
34
.
60.
Ayyub
,
B. M.
,
2011
,
Elicitation of Expert Opinion for Uncertainty and Risk
,
CRC Press
,
Boca Raton
.
61.
Tesfamariam
,
S.
, and
Wang
,
Y.
,
2012
, “
Risk-Based Seismic Retrofit Prioritization of Reinforced Concrete Civic Infrastructure: Case Study for State of Oregon Schools and Emergency Facilities
,”
Nat. Hazard. Rev.
,
13
(
3
),
188
195
.10.1061/(ASCE)NH.1527-6996.0000060
62.
Cimellaro
,
G. P.
, and
Arcidiacono
,
V.
,
2013
, “Resilience-Based Design for Urban Cities,”
Resilience and Urban Risk Management
,
D. Serre
,
B. Barroca
, and
R. Laganier
, eds.,
Taylor and Francis Group
,
London
, pp. 
127
141
.
63.
Zadeh
,
L. A.
,
1988
,
Foreword—Possibility Theory: An Approach to Computerized Processing of Uncertainty
,
Plenum Press
,
New York
.
64.
Hacking
,
I.
,
1974
, “Combined Evidence,”
Logical Theory and Semantic Analysis
,
S. Stenlund
, ed.,
D. Reidel Publishing Company
,
Dordrecht, Holland
, pp. 
113
123
.
65.
Montgomery
,
D.C.
, and
Runger
,
G. C.
,
2007
,
Applied Statistics and Probability for Engineers
,
4th ed.
,
John Wiley & Sons
,
Hoboken, NJ
.
66.
Segui
,
W. T.
,
2003
,
LRFD Steel Design
,
Brooks/Cole-Thomson Learning
,
Pacific Grove, CA
.
67.
Maes
,
M. A.
, and
Faber
,
M. H.
,
2004
, “
Issues in Utility Modeling And Rational Decision Making
,”
Proceedings of 11th IFIP WG 7.5 Reliability and Optimization of Structural Systems
,
M. Maes
, and
L. Huyse
, eds.,
Taylor and Francis Group
,
London
, pp. 
95
104
.
68.
Torra
,
V.
, and
Narukawa
,
Y.
,
2006
, “
The Interpretation of Fuzzy Integrals and Their Application to Fuzzy Systems
,”
Int. J. Approximate Reasoning
,
41
(1),
43
58
.10.1016/j.ijar.2005.08.001
You do not currently have access to this content.