The Architecture and Supplier Identification Tool (ASIT) is a design support tool, which enables identification of the most suitable architectures and suppliers in early stages of complex systems design, with consideration of overall requirements satisfaction and uncertainty. During uncertainty estimation, several types of uncertainties that are essential in early design (i.e., uncertainty of modules due to new technology integration, compatibility between modules, and supplier performance uncertainty) have been considered in ASIT. However, it remains unclear whether uncertainty due to expert estimation should be taken into account. From one perspective, expert estimation uncertainty may significantly influence the overall uncertainty, since early complex systems design greatly depends on expert estimation; whereas an opposing perspective argues that expert estimation uncertainty should be neglected given its relatively much smaller scale. In order to understand how expert estimation uncertainty influences the architecture and supplier identification, a comprehensive study of possible modeling approaches has been discussed within the context of ASIT; type-1 fuzzy sets and 2-tuple fuzzy linguistic representation are selected to integrate subjective uncertainty into ASIT. A powertrain design case is used to compare results between cases considering subjective uncertainty versus cases not considering subjective uncertainty. Finally, implications of considering subjective uncertainty in early conceptual design are discussed.

References

References
1.
Ye
,
Y.
,
Jankovic
,
M.
,
Kremer
,
G.
, and
Bocquet
,
J.-C.
,
2014
, “
Managing Uncertainty in Potential Supplier Identification
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
28
(
4
), pp.
339
351
.10.1017/S0890060414000511
2.
Nguyen Van
,
T.
,
2006
, “
System Engineering for Collaborative Data Management Systems: Application to Design/Simulation Loops
,” Ecole Centrale Paris, Paris.
3.
Airbus Group
,
2014
, “
Airbus—Global Website—Our Suppliers
,” Available: http://www.airbus-group.com/airbusgroup/int/en/our-company/Our-suppliers.html (accessed Apr. 14, 2014).
4.
(Ray) Wang
,
J.
,
2001
, “
Ranking Engineering Design Concepts Using a Fuzzy Outranking Preference Model
,”
Fuzzy Sets Syst.
,
119
(
1
), pp. 
161
170
.10.1016/S0165-0114(99)00104-9
5.
Zhai
,
L.-Y.
,
Khoo
,
L.-P.
, and
Zhong
,
Z.-W.
,
2009
, “
Design Concept Evaluation in Product Development Using Rough Sets and Grey Relation Analysis
,”
Expert Syst. Appl.
,
36
(
3
), pp. 
7072
7079
.10.1016/j.eswa.2008.08.068
6.
Fiod-Neto
,
M.
, and
Back
,
N.
,
1994
, “
Assessment of Product Conception: A Critical Review
,”
Proceedings of the 1994 Lancaster International Workshop on Engineering Design
,
Lancaster University, Engineering Design Centre
,
Lancaster
.
7.
Meyer
,
M. A.
, and
Booker
,
J. M.
,
2001
,
Eliciting and Analyzing Expert Judgment: A Practical Guide
,
SIAM
,
Philadelphia
.
8.
Medsker
,
L.
,
Tan
,
M.
, and
Turban
,
E.
,
1995
, “
Knowledge Acquisition From Multiple Experts: Problems and Issues
,”
Expert Syst. Appl.
,
9
(
1
), pp. 
35
40
.10.1016/0957-4174(94)00046-X
9.
Booker
,
J. M.
,
Anderson
,
M. C.
, and
Meyer
,
M. A.
,
2003
, “
The Role of Expert Knowledge in Uncertainty Quantification (Are We Adding More Uncertainty or More Understanding?)
,”
Proceedings of the 9th Annual U.S. Army Conference on Applied Statistics
,
University of California
,
Davis, CA
.
10.
Dror
,
I. E.
, and
Charlton
,
D.
,
2006
, “
Why Experts Make Errors
,”
J. Forensic Ident.
,
56
(
4
), pp. 
600
616
.
11.
Oberkampf
,
W. L.
,
Helton
,
J. C.
, and
Sentz
,
K.
,
2001
, “
Mathematical Representation of Uncertainty
,”
American Institute of Aeronautics and Astronautics Non-Deterministic Approaches Forum
,
Seattle, WA
.
12.
Ng
,
K.-C.
, and
Abramson
,
B.
,
1990
, “
Uncertainty Management in Expert Systems
,”
IEEE Expert
,
5
(
2
), pp. 
29
48
.10.1109/64.53180
13.
Asadoorian
,
M. O.
, and
Kantarelis
,
D.
,
2005
,
Essentials of Inferential Statistics
,
University Press of America
,
Lanham, MD
.
14.
Walley
,
P.
,
1991
,
Statistical Reasoning With Imprecise Probabilities
,
Chapman and Hall
,
London
.
15.
Coolen
,
F. P. A.
,
2004
, “
On the Use of Imprecise Probabilities in Reliability
,”
Qual. Reliab. Eng. Int.
,
20
(
3
), pp. 
193
202
.10.1002/(ISSN)1099-1638
16.
Dempster
,
A. P.
,
1967
, “
Upper and Lower Probabilities Induced by a Multivalued Mapping
,”
Ann. Math. Statist.
,
38
(
2
), pp. 
325
339
.10.1214/aoms/1177698950
17.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
,
Princeton University Press
,
Princeton, NJ
.
18.
Zadeh
,
L. A.
,
1965
, “
Fuzzy Sets
,”
Inf. Control
,
8
(
3
), pp. 
338
353
.10.1016/S0019-9958(65)90241-X
19.
Dalalah
,
D.
, and
Magableh
,
S.
,
2008
, “
Diagnosis and Management of Strep Throat: Remote Multicriteria Fuzzy Reasoning Approach
,”
Telemedicine Ehealth J.
,
14
(
7
), pp. 
656
665
.10.1089/tmj.2007.0120
20.
Zadeh
,
L. A.
,
1999
, “
Fuzzy Sets as a Basis for a Theory of Possibility
,”
Fuzzy Sets Syst.
,
100
(
Suppl. 1
), pp. 
9
34
.
21.
Dubois
,
D. A.
, and
Prade
,
H. M.
,
1988
,
Possibility Theory: An Approach to Computerized Processing of Uncertainty
,
Plenum Press
,
New York
.
22.
Cooman
,
G. D.
,
Ruan
,
D.
, and
Kerre
,
E. E.
,
1995
,
Foundations and Applications of Possibility Theory: Proceedings of FAPT ’95: Ghent, Belgium, Dec. 13–15
,
World Scientific Publishing Company, Incorporated
,
Hackensack, NJ
.
23.
Moore
,
R. E.
,
1979
,
Methods and Applications of Interval Analysis
,
SIAM
,
Philadelphia
.
24.
Kearfott
,
R. B.
, and
Kreinovich
,
V.
,
1996
,
Applications of Interval Computations
,
Springer
,
Dordrecht
.
25.
Moore
,
R.
, and
Lodwick
,
W.
,
2003
, “
Interval Analysis and Fuzzy Set Theory
,”
Fuzzy Sets Syst.
,
135
(
1
), pp. 
5
9
.10.1016/S0165-0114(02)00246-4
26.
Pawlak
,
Z.
,
1982
, “
Rough Sets
,”
Int. J. Comput. Inf. Sci.
,
11
(
5
), pp. 
341
356
.10.1007/BF01001956
27.
Pawlak
,
Z.
,
1997
, “
Rough Set Approach to Knowledge-Based Decision Support
,”
Eur. J. Oper. Res.
,
99
(
1
), pp. 
48
57
.10.1016/S0377-2217(96)00382-7
28.
Chen
,
C.-T.
,
Lin
,
C.-T.
, and
Huang
,
S.-F.
,
2006
, “
A Fuzzy Approach for Supplier Evaluation and Selection in Supply Chain Management
,”
Int. J. Prod. Econ.
,
102
(
2
), pp. 
289
301
.10.1016/j.ijpe.2005.03.009
29.
Boran
,
F. E.
,
Genç
,
S.
,
Kurt
,
M.
, and
Akay
,
D.
,
2009
, “
A Multi-Criteria Intuitionistic Fuzzy Group Decision Making for Supplier Selection With TOPSIS Method
,”
Expert Syst. Appl.
,
36
(
8
), pp. 
11363
11368
.10.1016/j.eswa.2009.03.039
30.
Kahraman
,
C.
,
Cebeci
,
U.
, and
Ulukan
,
Z.
,
2003
, “
Multi-Criteria Supplier Selection Using Fuzzy AHP
,”
Logist. Inf. Manage.
,
16
(
6
), pp. 
382
394
.
31.
Haq
,
A. N.
, and
Kannan
,
G.
,
2006
, “
Fuzzy Analytical Hierarchy Process for Evaluating and Selecting a Vendor in a Supply Chain Model
,”
Int. J. Adv. Manuf. Technol.
,
29
(
7–8
), pp. 
826
835
.
32.
Chan
,
F. T. S.
,
Kumar
,
N.
,
Tiwari
,
M. K.
,
Lau
,
H. C. W.
, and
Choy
,
K. L.
,
2008
, “
Global Supplier Selection: a Fuzzy-AHP Approach
,”
Int. J. Prod. Res.
,
46
(
14
), pp. 
3825
3857
.10.1080/00207540600787200
33.
Bottani
,
E.
, and
Rizzi
,
A.
,
2008
, “
An Adapted Multi-Criteria Approach to Suppliers and Products Selection—An Application Oriented to Lead-Time Reduction
,”
Int. J. Prod. Econ.
,
111
(
2
), pp. 
763
781
.10.1016/j.ijpe.2007.03.012
34.
Vinodh
,
S.
,
Anesh Ramiya
,
R.
, and
Gautham
,
S. G.
,
2011
, “
Application of Fuzzy Analytic Network Process for Supplier Selection in a Manufacturing Organisation
,”
Expert Syst. Appl.
,
38
(
1
), pp. 
272
280
.10.1016/j.eswa.2010.06.057
35.
Önüt
,
S.
,
Kara
,
S. S.
, and
Işik
,
E.
,
2009
, “
Long Term Supplier Selection Using a Combined Fuzzy MCDM Approach: A Case Study for a Telecommunication Company
,”
Expert Syst. Appl.
,
36
(
2
), Part 2, pp. 
3887
3895
.10.1016/j.eswa.2008.02.045
36.
Amid
,
A.
,
Ghodsypour
,
S. H.
, and
O’Brien
,
C.
,
2006
, “
Fuzzy Multiobjective Linear Model for Supplier Selection in a Supply Chain
,”
Int. J. Prod. Econ.
,
104
(
2
), pp. 
394
407
.10.1016/j.ijpe.2005.04.012
37.
Bayrak
,
M. Y.
,
Çelebi
,
N.
, and
Taşkin
,
H.
,
2007
, “
A Fuzzy Approach Method for Supplier Selection
,”
Prod. Plann. Control
,
18
(
1
), pp. 
54
63
.10.1080/09537280600940713
38.
Chou
,
S.-Y.
, and
Chang
,
Y.-H.
,
2008
, “
A Decision Support System for Supplier Selection Based on a Strategy-Aligned Fuzzy SMART Approach
,”
Expert Syst. Appl.
,
34
(
4
), pp. 
2241
2253
.10.1016/j.eswa.2007.03.001
39.
Bevilacqua
,
M.
,
Ciarapica
,
F. E.
, and
Giacchetta
,
G.
,
2006
, “
A Fuzzy-QFD Approach to Supplier Selection
,”
J. Purchasing Supply Manage.
,
12
(
1
), pp. 
14
27
.10.1016/j.pursup.2006.02.001
40.
Dalalah
,
D.
,
Hayajneh
,
M.
, and
Batieha
,
F.
,
2011
, “
A Fuzzy Multi-Criteria Decision Making Model for Supplier Selection
,”
Expert Syst. Appl.
,
38
(
7
), pp. 
8384
8391
.10.1016/j.eswa.2011.01.031
41.
Chen
,
S.-M.
, and
Lee
,
L.-W.
,
2010
, “
Fuzzy Multiple Attributes Group Decision-Making Based on the Interval Type-2 TOPSIS Method
,”
Expert Syst. Appl.
,
37
(
4
), pp. 
2790
2798
.10.1016/j.eswa.2009.09.012
42.
Wang
,
W.-P.
,
2010
, “
A Fuzzy Linguistic Computing Approach to Supplier Evaluation
,”
Appl. Math. Modell.
,
34
(
10
), pp. 
3130
3141
.10.1016/j.apm.2010.02.002
43.
Mendel
,
J. M.
, and
John
,
R. I. B.
,
2002
, “
Type-2 Fuzzy Sets Made Simple
,”
IEEE Trans. Fuzzy Syst.
,
10
(
2
), pp. 
117
127
.10.1109/91.995115
44.
Zadeh
,
L. A.
,
1975
, “
The Concept of a Linguistic Variable and Its Application to Approximate Reasoning—I
,”
Inf. Sci.
,
8
(
3
), pp. 
199
249
.10.1016/0020-0255(75)90036-5
45.
Atanassov
,
K. T.
,
1986
, “
Intuitionistic Fuzzy Sets
,”
Fuzzy Sets Syst.
,
20
(
1
), pp. 
87
96
.10.1016/S0165-0114(86)80034-3
46.
Herrera
,
F.
, and
Martinez
,
L.
,
2000
, “
A 2-Tuple Fuzzy Linguistic Representation Model for Computing With Words
,”
IEEE Trans. Fuzzy Syst.
,
8
(
6
), pp. 
746
752
.10.1109/91.890332
47.
Delgado
,
M.
,
Verdegay
,
J. L.
, and
Vila
,
M. A.
,
1993
, “
On Aggregation Operations of Linguistic Labels
,”
Int. J. Intell. Syst.
,
8
(
3
), pp. 
351
370
.10.1002/(ISSN)1098-111X
48.
Gao
,
S.
,
Zhang
,
Z.
, and
Cao
,
C.
,
2009
, “
Multiplication Operation on Fuzzy Numbers
,”
J. Software
,
4
(
4
), p. 
331
.10.4304/jsw.4.4.331-338
49.
Ross
,
T. J.
,
2009
,
Fuzzy Logic with Engineering Applications
,
John Wiley & Sons
,
Hoboken, NJ
.
50.
Garibaldi
,
J. M.
, and
John
,
R. I.
,
2003
, “
Choosing Membership Functions of Linguistic Terms
,”
Proceedings of the 12th IEEE International Conference on Fuzzy Systems, FUZZ ‘03
, Vol. 
1
, pp. 
578
583
.
51.
Pedrycz
,
W.
,
1994
, “
Why Triangular Membership Functions?
Fuzzy Sets Syst.
,
64
(
1
), pp. 
21
30
.10.1016/0165-0114(94)90003-5
52.
Dubois
,
D. A.
, and
Prade
,
H.
,
1978
, “
Operations on Fuzzy Numbers
,”
Int. J. Syst. Sci.
,
9
(
6
), pp. 
613
626
.10.1080/00207727808941724
53.
Chang
,
D.-Y.
,
1996
, “
Applications of the Extent Analysis Method on Fuzzy AHP
,”
Eur. J. Oper. Res.
,
95
(
3
), pp. 
649
655
.10.1016/0377-2217(95)00300-2
54.
Triantaphyllou
,
E.
,
2000
, “Fuzzy Multi-Criteria Decision Making,”
Multi-Criteria Decision Making Methods: A Comparative Study
,
Springer
,
Dordrecht
, pp. 
241
262
.
55.
Chiou
,
H.-K.
,
Tzeng
,
G.-H.
, and
Cheng
,
D.-C.
,
2005
, “
Evaluating Sustainable Fishing Development Strategies Using Fuzzy MCDM Approach
,”
Omega
,
33
(
3
), pp. 
223
234
.10.1016/j.omega.2004.04.011
56.
Tzeng
,
G.-H.
, and
Huang
,
J.-J.
,
2011
,
Multiple Attribute Decision Making: Methods and Applications
,
CRC Press
,
Boca Raton
.
57.
Runkler
,
T. A.
,
1997
, “
Selection of Appropriate Defuzzification Methods Using Application Specific Properties
,”
Trans. Fuzzy Syst.
,
5
(
1
), pp. 
72
79
.10.1109/91.554449
58.
Serway
,
R.
, and
Jewett
,
J.
,
2013
,
Physics for Scientists and Engineers with Modern Physics
,
Cengage Learning
,
Boston
.
You do not currently have access to this content.