Linear matrix inequalities (LMIs) comprise a large class of convex constraints. Boxes, ellipsoids, and linear constraints can be represented by LMIs. The intersection of LMIs are also classified as LMIs. Interior-point methods are able to minimize or maximize any linear criterion of LMIs with complexity, which is polynomial regarding to the number of variables. As a consequence, as shown in this paper, it is possible to build optimal contractors for sets represented by LMIs. When solving a set of nonlinear constraints, one may extract from all constraints that are LMIs in order to build a single optimal LMI contractor. A combination of all contractors obtained for other non-LMI constraints can thus be performed up to the fixed point. The resulting propogation is shown to be more efficient than other conventional contractor-based approaches.

References

1.
Moore
,
R. E.
, and
Yang
,
C. T.
,
1959
, “
Interval Analysis
,”
Lockheed Missiles and Space Division
,
Sunnyvale, CA
, LMSD-285875.
2.
Jaulin
,
L.
,
Kieffer
,
M.
,
Didrit
,
O.
, and
Walter
,
É.
,
2001
,
Applied Interval Analysis. With Examples in Parameter and State Estimation, Robust Control and Robotics
,
Springer
,
London
.
3.
Kearfott
,
R. B.
, and
Kreinovich
,
V.
, eds.,
1996
,
Applications of Interval Computations
,
Kluwer
,
Dordrecht
.
4.
Jaulin
,
L.
,
Braems
,
I.
, and
Walter
,
E.
,
2002
, “
Interval Methods for Nonlinear Identification and Robust Control
,”
Proceedings of the 41st IEEE Conference on Decision and Control
,
Dec. 2002
,
IEEE
,
New York
, Vol. 
4
, pp. 
4676
4681
.
5.
Jaulin
,
L.
,
2009
, “
A Nonlinear Set-Membership Approach for the Localization and Map Building of an Underwater Robot Using Interval Constraint Propagation
,”
IEEE Trans. Rob.
,
25
(
1
), pp. 
88
98
.10.1109/TRO.2008.2010358
6.
Messine
,
F.
,
2004
, “
Deterministic Global Optimization Using Interval Constraint Propagation Techniques
,”
RAIRO—Oper. Res.—Recherche Opérationnelle
,
38
(
4
), pp. 
277
293
.10.1051/ro:2004026
7.
Jaulin
,
L.
, and
Walter
,
E.
,
1993
, “
Set Inversion Via Interval Analysis for Nonlinear Bounded-Error Estimation
,”
Automatica
,
29
(
4
), pp. 
1053
1064
.10.1016/0005-1098(93)90106-4
8.
Jaulin
,
L.
, and
Henrion
,
D.
,
2005
, “
Contracting Optimally an Interval Matrix Without Loosing any Positive Semi-Definite Matrix is a Tractable Problem
,”
Reliab. Comput.
,
11
(
1
), pp. 
1
17
.10.1007/s11155-005-5939-3
9.
Araya
,
I.
,
Trombettoni
,
G.
, and
Neveu
,
B.
,
2012
, “
A Contractor Based on Convex Interval Taylor
,”
9th International Conferenceon Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation Problems—CPAIOR 2012
,
Nantes, France
,
May 28–June 1
,
Springer
,
Berlin
, pp. 
1
16
.
10.
Boyd
,
S.
,
El Ghaoui
,
L.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
(Studies in Applied Mathematics, Vol. 
15
),
SIAM
,
Philadelphia, PA
.
11.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
New York
.
12.
Ben-Tal
,
A.
, and
Nemirovskii
,
A.
,
2001
,
Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications
,
SIAM
,
Philadelphia, PA
.
13.
Arzelier
,
D.
,
Clement
,
B.
, and
Peaucelle
,
D.
,
2006
, “
Multi-Objective H2/H ∞ /Impulse-to-Peak Control of a Space Launch Vehicle
,”
Eur. J. Control
,
12
(
1
), pp. 
57
70
.10.3166/ejc.12.57-70
14.
Karmarkar
,
M.
,
1984
, “
A New Polynomial-Time Algorithm for Linear Programming
,”
Combinatorica
,
4
(
4
), pp. 
373
395
.10.1007/BF02579150
15.
Nesterov
,
Y.
, and
Nemirovskii
,
A.
,
1994
,
Interior-Point Polynomial Methods in Convex Programming
,
SIAM
,
Philadelphia, PA
.
16.
Benhamou
,
F.
,
Goualard
,
F.
,
Granvilliers
,
L.
, and
Puget
,
J.-F.
,
1999
, “
Revising Hull and Box Consistency
,”
International Conference on Logic Programming (ICLP)
,
MIT Press
,
Cambridge
, pp. 
230
244
.
17.
Fujisawa
,
K.
,
Fukuda
,
M.
,
Kobayashi
,
K.
,
Kojima
,
M.
,
Nakata
,
K.
,
Nakata
,
M.
, and
Yamashita
,
M.
,
2008
, “
SDPA (Semidefinite Programming Algorithm) User’s Manual—Version 7.0.5
,” Technical report, http://www.is.titech.ac.jp/research/research-report/B/B-448.pdf.
18.
Araya
,
I.
,
Trombettoni
,
G.
,
Neveu
,
B.
, and
Chabert
,
G.
,
2014
, “
Upper Bounding in Inner Regions for Global Optimization Under Inequality Constraints
,”
J. Global Optim.
,
60
(
2
), pp. 
145
164
.10.1007/s10898-014-0145-7
19.
Chabert
,
G.
, and
Jaulin
,
L.
,
2009
, “
Contractor Programming
,”
Artif. Intell.
,
173
(
11
), pp. 
1079
1100
.10.1016/j.artint.2009.03.002
20.
Ninin
,
J.
,
Messine
,
F.
, and
Hansen
,
P.
,
2009
, “
An Automatic Linear Reformulation Technique Based on Affine Arithmetic
,”
International Symposium on Mathematical Programming (ISMP)
,
Chicago
,
Aug. 23–28
,
University of Chicago Press
, p. 
52
, http://www.journals.uchicago.edu/.
21.
Neumaier
,
A.
, and
Shcherbina
,
O.
,
2004
, “
Safe Bounds in Linear and Mixed-Integer Linear Programming
,”
Math. Program.
,
99
(
2
), pp. 
283
296
.
22.
Drevelle
,
V.
, and
Nicola
,
J.
,
2014
, “
Vibes: A Visualizer for Intervals and Boxes
,”
Math. Comput. Sci.
,
8
(
3–4
), pp. 
563
572
.
23.
Jaulin
,
L.
,
2011
, “
Range-Only SLAM With Occupancy Maps: A Set-Membership Approach
,”
IEEE Trans. Rob.
,
27
(
5
), pp. 
1004
1010
.10.1109/TRO.2011.2147110
24.
Blanco
,
J. L.
,
Gonzalez
,
J.
, and
Fernández-Madrigal
,
J. A.
,
2008
, “
A Pure Probabilistic Approach to Range-Only SLAM
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
IEEE
,
New York
, pp. 
1436
1441
.
25.
Drevelle
,
V.
, and
Bonnifait
,
P.
,
2009
, “
High Integrity GNSS Location Zone Characterization Using Interval Analysis
,”
Proceedings of the 22nd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2009)
,
Savannah, GA
.
You do not currently have access to this content.