In this study, we deal with the problem of structural optimization under uncertainty. In previous studies, either of three philosophies were adopted: (a) probabilistic methodology, (b) fuzzy-sets-based design, or (c) nonprobabilistic approach in the form of given bounds of variation of uncertain quantities. In these works, authors are postulating knowledge of either involved probability densities, membership functions, or bounds in the form of boxes or ellipsoids, where the uncertainty is assumed to vary. Here, we consider the problem in its apparently pristine setting, when the initial raw data are available and the uncertainty model in the form of bounds must be constructed. We treat the often-encountered case when scarce data are available and the unknown-but-bounded uncertainty is dealt with. We show that the probability concepts ought to be invoked for predicting the worst- and best-possible designs. The Chebyshev inequality, applied to the raw data, is superimposed with the study of the robustness of the associated deterministic optimal design. We demonstrate that there is an intricate relationship between robustness and probability.

References

References
1.
Frangopol
,
D. M.
,
1985
, “
Structural Optimization Using Reliability Concepts
,”
J. Struct. Eng.
,
111
(
11
), pp.
2288
2301
.10.1061/(ASCE)0733-9445(1985)111:11(2288)
2.
Moses
,
F.
,
1997
, “
Problems and Prospects of Reliability-Based Optimization
,”
Eng. Struct.
,
19
(
4
), pp.
293
301
.10.1016/S0141-0296(97)83356-1
3.
Rao
,
S.
,
1987
, “
Multi-Objective Optimization of Fuzzy Structural Systems
,”
Int. J. Numer. Methods Eng.
,
24
(
6
), pp.
1157
1171
.10.1002/(ISSN)1097-0207
4.
Rao
,
S.
, and
Sawyer
,
J. P.
,
1995
, “
Fuzzy Finite Element Approach for Analysis of Imprecisely Defined Systems
,”
AIAA J.
,
33
(
12
), pp.
2364
2370
.10.2514/3.12910
5.
Elishakoff
,
I.
,
Haftka
,
R.
, and
Fang
,
J.
,
1994
, “
Structural Design Under Bounded Uncertainty–Optimization With Anti-Optimization
,”
Comput. Struc.
,
53
(
6
), pp.
1401
1405
.10.1016/0045-7949(94)90405-7
6.
Rao
,
S. S.
, and
Berke
,
L.
,
1997
, “
Analysis of Uncertain Structural Systems Using Interval Analysis
,”
AIAA J.
,
35
(
4
), pp.
727
735
.10.2514/2.164
7.
Rao
,
S.
, and
Majumder
,
L.
,
2008
, “
Optimization of Aircraft Wings for Gust Loads: Interval Analysis-Based Approach
,”
AIAA J.
,
46
(
3
), pp.
723
732
.10.2514/1.33152
8.
Ben-Tal
,
A.
,
El Ghaoui
,
L.
, and
Nemirovski
,
A.
,
2009
,
Robust Optimization
,
Princeton University Press
,
Princeton, NJ
.
9.
Elishakoff
,
I.
, and
Ohsaki
,
M.
,
2010
,
Optimization and Anti-Optimization of Structures Under Uncertainty
,
Imperial College Press
,
London
.
10.
Banichuk
,
N. V.
, and
Neittaanmäki
,
P.
,
2009
,
Structural Optimization With Uncertainties
,
Springer
,
New York
.
11.
Sahinidis
,
N. V.
,
2004
, “
Optimization Under Uncertainty: State-of-the-Art and Opportunities
,”
Comput. Chem. Eng.
,
28
(
6
), pp.
971
983
.10.1016/j.compchemeng.2003.09.017
12.
Tsompanakis
,
Y.
,
Lagaros
,
N. D.
, and
Papadrakakis
,
M.
2008
,
Structural Design Optimization Considering Uncertainties: Structures & Infrastructures Book, Vol. 1, Series, Series Editor: Dan M. Frangopol
,
Taylor & Francis
,
Boca Raton
.
13.
El Hami
,
A.
, and
Bouchaib
,
R.
,
2013
,
Uncertainty and Optimization in Structural Mechanics
,
John Wiley & Sons
,
Hoboken, NJ
.
14.
Christensen
,
P. W.
, and
Klarbring
,
A.
,
2009
,
An Introduction to Structural Optimization
,
Springer
,
New York
.
15.
Saw
,
J. G.
,
Yang
,
M. C.
, and
Mo
,
T. C.
,
1984
, “
Chebyshev Inequality With Estimated Mean and Variance
,”
Am. Stat.
,
38
(
2
), pp.
130
132
.10.1080/00031305.1984.10483182
16.
Kabán
,
A.
,
2012
, “
Non-Parametric Detection of Meaningless Distances in High Dimensional Data
,”
Stat. Comput.
,
22
(
2
), pp.
375
385
.10.1007/s11222-011-9229-0
17.
Sigmund
,
O.
,
2009
,
“Manufacturing Tolerant Topology Optimization
,”
Acta Mech. Sin.
,
25
(
2
), pp.
227
239
.10.1007/s10409-009-0240-z
18.
Wang
,
F.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
On Projection Methods, Convergence and Robust Formulations in Topology Optimization
,”
Struct. Multidis. Opt.
,
43
(
6
), pp.
767
784
.10.1007/s00158-010-0602-y
19.
Amir
,
O.
,
Sigmund
,
O.
,
Schevenels
,
M.
, and
Lazarov
,
B.
,
2012
, “
Efficient Reanalysis Techniques for Robust Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
245–246
, pp.
217
231
.
20.
Krenk
,
S.
,
1993
,
Non-Linear Analysis With Finite Elements: Textbook, Advanced Graduate Level
,
Aalborg
,
Denmark
.
21.
CEN
,
2005
, “
Eurocode 3: Design of Steel Structures—Part 1-1: General Rules and Rules for Buildings
,”
European Committee for Standardisation
,
Brussels, Belgium
.
You do not currently have access to this content.