In this paper, we evaluate the robustness and recovery of connected critical infrastructures (CIs) under a system-of-systems (SoS) framework taking into account: (1) the dependencies among the components of an individual CI and the interdependencies among different CIs; (2) the variability in component performance, by a multistate model; and (3) the epistemic uncertainty in the probabilities of transitions between different components states and in the mean values of the holding-times distributions, by means of intervals. We adopt the goal tree success tree–dynamic master logic diagram (GTST–DMLD) for system modeling and perform the quantitative assessment by Monte Carlo simulation. We illustrate the approach by way of a simplified case study consisting of two interdependent infrastructures (electric power system and gas network) and a supervisory control and data acquisition (SCADA) system connected to the gas network.

References

1.
Nozick
,
L. K.
,
Turnquist
,
M. A.
,
Jones
,
D. A.
,
Davis
,
J. R.
, and
Lawton
,
C. R.
,
2005
, “
Assessing the Performance of Interdependent Infrastructures and Optimising Investments
,”
Int. J. Crit. Infrastruct.
,
1
(
2–3
), pp. 
144
154
.10.1504/IJCIS.2005.006116
2.
Adachi
,
T.
, and
Ellingwood
,
B. R.
,
2008
, “
Serviceability of Earthquake-Damaged Water Systems: Effects of Electrical Power Availability and Power Backup Systems on System Vulnerability
,”
Reliab. Eng. Syst. Saf.
,
93
(
1
), pp. 
78
88
.10.1016/j.ress.2006.10.014
3.
Ferrario
,
E.
, and
Zio
,
E.
,
2014
, “
Goal Tree Success Tree-Dynamic Master Logic Diagram and Monte Carlo Simulation for the Safety and Resilience Assessment of a Multistate System of Systems
,”
Eng. Struct.
,
59
, pp. 
411
433
.10.1016/j.engstruct.2013.11.001
4.
Apostolakis
,
G.
,
1990
, “
The Concept of Probability in Safety Assessments of Technological Systems
,”
Science
,
250
(
4986
), pp. 
1359
1364
.10.1126/science.2255906
5.
NASA
,
2010
, “
Risk-Informed Decision Making Handbook
,” Technical Report No. NASA/SP-2010-576, Version 1.0.
6.
US NRC
,
2009
, “
Guidance on the Treatment of Uncertainties Associated With PRAs in Risk-Informed Decision Making
,” Technical Report No. NUREG-1855,
US Nuclear Regulatory Commission
, Washington, DC.
7.
Sallak
,
M.
,
Schon
,
W.
, and
Aguirre
,
F.
,
2013
, “
Reliability Assessment for Multi-State Systems under Uncertainties Based on the Dempster-Shafer Theory
,”
IIE Trans.
,
45
(
9
), pp. 
995
1007
.10.1080/0740817X.2012.706378
8.
Aven
,
T.
, and
Zio
,
E.
,
2011
, “
Some Considerations on the Treatment of Uncertainties in Risk Assessment for Practical Decision Making
,”
Reliab. Eng. Syst. Saf.
,
96
(
1
), pp. 
64
74
.10.1016/j.ress.2010.06.001
9.
Bernardo
,
J. M.
, and
Smith
,
A. F. M.
,
1994
,
Bayesian Theory
,
Wiley
,
Chichester
.
10.
Coolen
,
F. P. A.
, and
Utkin
,
L. V.
,
2007
, “
Imprecise Probability: A Concise Overview
,”
Risk, Reliability and Societal Safety, Three Volume Set: Proceedings of the European Safety and Reliability Conference 2007 (ESREL 2007)
,
Stavanger, Norway
, June 25–27, 2007, T. Aven, and J. E. Vinnem, eds.,
Taylor & Francis
,
London
, pp. 
1959
1966
.
11.
De Finetti
,
B.
,
1974
,
Theory of Probability
,
Wiley
,
New York
.
12.
Hu
,
Y. S.
, and
Modarres
,
M.
,
1999
, “
Evaluating System Behavior Through Dynamic Master Logic Diagram (DMLD) Modeling
,”
Reliab. Eng. Syst. Saf.
,
64
(
2
), pp. 
241
269
.10.1016/S0951-8320(98)00066-0
13.
Kozine
,
I. O.
, and
Utkin
,
L. V.
,
2002
, “
Processing Unreliable Judgements With an Imprecise Hierarchical Model
,”
Risk Decis. Policy
,
7
(
3
), pp. 
325
339
.10.1017/S1357530902000716
14.
Kuznetsov
,
V. P.
,
1991
,
Interval Statistical Models
,
Radio i Svyaz
,
Moscow
(in Russian).
15.
Walley
,
P.
,
1991
,
Statistical Reasoning With Imprecise Probabilities
,
Chapman and Hall
,
New York
.
16.
Beer
,
M.
, and
Ferson
,
S.
,
2013
, “
Special Issue of Mechanical Systems and Signal Processing “Imprecise Probabilities—What Can They Add to Engineering Analyses?”
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp. 
1
3
.10.1016/j.ymssp.2013.03.018
17.
Beer
,
M.
,
Ferson
,
S.
, and
Kreinovich
,
V.
,
2013
, “
Imprecise Probabilities in Engineering Analyses
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp. 
4
29
.
18.
Blockley
,
D.
,
2013
, “
Analysing Uncertainties: Towards Comparing Bayesian and Interval Probabilities’
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp. 
30
42
.10.1016/j.ymssp.2012.05.007
19.
Crespo
,
L. G.
,
Kenny
,
S. P.
, and
Giesy
,
D. P.
,
2013
, “
Reliability Analysis of Polynomial Systems Subject to P-Box Uncertainties
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp. 
121
136
.10.1016/j.ymssp.2012.08.012
20.
Jalal-Kamali
,
A.
, and
Kreinovich
,
V.
,
2013
, “
Estimating Correlation Under Interval Uncertainty
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp. 
43
53
.10.1016/j.ymssp.2012.12.003
21.
Mehl
,
C. H.
,
2013
, “
P-Boxes for Cost Uncertainty Analysis
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp. 
253
263
.10.1016/j.ymssp.2012.03.014
22.
Ferson
,
S.
, and
Ginzburg
,
L. R.
,
1996
, “
Different Methods Are Needed to Propagate Ignorance and Variability
,”
Reliab. Eng. Syst. Saf.
,
54
(
2–3
), pp. 
133
144
.10.1016/S0951-8320(96)00071-3
23.
Ferson
,
S.
, and
Hajagos
,
J. G.
,
2004
, “
Arithmetic With Uncertain Numbers: Rigorous and (Often) Best Possible Answers
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp. 
135
152
.10.1016/j.ress.2004.03.008
24.
Ferson
,
S.
,
Kreinovich
,
V.
,
Hajagos
,
J.
,
Oberkampf
,
W.
, and
Ginzburg
,
L.
,
2007
, “
Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty
,”
Sandia National Laboratories
, Setauket, New York, SAND2007-0939.
25.
Ferson
,
S.
,
Moore
,
D. R. J.
,
Van Den Brink
,
P. J.
,
Estes
,
T. L.
,
Gallagher
,
K.
,
Connor
,
R. O.
, and
Verdonck
,
F.
,
2010
, “Bounding Uncertainty Analyses,”
Application of Uncertainty Analysis to Ecological Risks of Pesticides
, W. J. Warren-Hicks, and A. Hart, eds.,
CRC Press
,
Boca Raton
, pp. 
89
122
.
26.
Ferson
,
S.
, and
Tucker
,
W. T.
,
2006
, “
Sensitivity in Risk Analyses With Uncertain Numbers
,”
Sandia National Laboratories
, Setauket, New York, .
27.
Buckley
,
J. J.
,
2004
, “Fuzzy Markov Chains,”
Fuzzy Probabilities and Fuzzy Sets for Web Planning
,
Springer
,
Berlin
, pp. 
35
43
.
28.
Kalos
,
M. H.
, and
Whitlock
,
P. A.
,
1986
,
Monte Carlo Methods. Volume 1: Basics
,
Wiley
,
New York
.
29.
Zio
,
E.
,
2013
,
The Monte Carlo Simulation Method for System Reliability and Risk Analysis
(Springer Series in Reliability Engineering),
Springer
,
London
.
30.
MSSP
,
2013
, “
Special Issue of Mechanical Systems and Signal Processing “Imprecise Probabilities-What Can They Add to Engineering Analyses?”
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp. 
1
263
.
31.
Muscolino
,
G.
, and
Sofi
,
A.
,
2013
, “
Bounds for the Stationary Stochastic Response of Truss Structures With Uncertain-but-Bounded Parameters
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp. 
163
181
.10.1016/j.ymssp.2012.06.016
32.
Pannier
,
S.
,
Waurick
,
M.
,
Graf
,
W.
, and
Kaliske
,
M.
,
2013
, “
Solutions to Problems With Imprecise Data—An Engineering Perspective to Generalized Uncertainty Models
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp. 
105
120
.10.1016/j.ymssp.2012.08.002
33.
Reid
,
S. G.
,
2013
, “
Probabilistic Confidence for Decisions Based on Uncertain Reliability Estimates
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp. 
229
239
.10.1016/j.ymssp.2012.07.016
34.
Sankararaman
,
S.
, and
Mahadevan
,
S.
,
2013
, “
Distribution Type Uncertainty Due to Sparse and Imprecise Data
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp. 
182
198
.10.1016/j.ymssp.2012.07.008
35.
Zhang
,
H.
,
Dai
,
H.
,
Beer
,
M.
, and
Wang
,
W.
,
2013
, “
Structural Reliability Analysis on the Basis of Small Samples: An Interval Quasi-Monte Carlo Method
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp. 
137
151
.10.1016/j.ymssp.2012.03.001
36.
Ferson
,
S.
,
2005
,
Bayesian Methods in Risk Assessment
,
Applied Biomathematics
,
Setauket, New York
, www.ramas.com/bayes.pdf.
37.
Karanki
,
D. R.
,
Kushwaha
,
H. S.
,
Verma
,
A. K.
, and
Ajit
,
S.
,
2009
, “
Uncertainty Analysis Based on Probability Bounds (P-Box) Approach in Probabilistic Safety Assessment
,”
Risk Anal.
,
29
(
5
), pp. 
662
675
.10.1111/risk.2009.29.issue-5
38.
Limbourg
,
P.
, and
De Rocquigny
,
E.
,
2010
, “
Uncertainty Analysis Using Evidence Theory—Confronting Level-1 and Level-2 Approaches With Data Availability and Computational Constraints
,”
Reliab. Eng. Syst. Saf.
,
95
(
5
), pp. 
550
564
.10.1016/j.ress.2010.01.005
39.
Möller
,
B.
,
Graf
,
W.
, and
Beer
,
M.
,
2003
, “
Safety Assessment of Structures in View of Fuzzy Randomness
,”
Comput. Struct.
,
81
(
15
), pp. 
1567
1582
.10.1016/S0045-7949(03)00147-0
40.
Pedroni
,
N.
, and
Zio
,
E.
,
2012
, “
Empirical Comparison of Methods for the Hierarchical Propagation of Hybrid Uncertainty in Risk Assessment, in Presence of Dependences
,”
Int. J. Uncertainty Fuzziness Knowledge Based Syst.
,
20
(
4
), pp. 
509
557
.10.1142/S0218488512500250
41.
Pedroni
,
N.
,
Zio
,
E.
,
Ferrario
,
E.
,
Pasanisi
,
A.
, and
Couplet
,
M.
,
2013
, “
Hierarchical Propagation of Probabilistic and Non-Probabilistic Uncertainty in the Parameters of a Risk Model
,”
Comput. Struct.
,
126
, pp. 
199
213
.10.1016/j.compstruc.2013.02.003
42.
Brissaud
,
F.
,
Barros
,
A.
,
Bérenguer
,
C.
, and
Charpentier
,
D.
,
2011
, “
Reliability Analysis for New Technology-Based Transmitters
,”
Reliab. Eng. Syst. Saf.
,
96
(
2
), pp. 
299
313
.10.1016/j.ress.2010.09.010
43.
Zio
,
E.
,
2009
,
Computational Methods for Reliability and Risk Analysis, Series on Quality, Reliability and Engineering Statistics
,
World Scientific Publishing
,
Singapore
.
44.
Barry
,
L. N.
,
1995
,
Stochastic Modeling: Analysis and Simulation
,
McGraw-Hill
,
New York
.
45.
Williams
,
P. M
.,
1976
, “Indeterminate Probabilities,”
Formal Methods in the Methodology of Empirical Sciences
, M. Przełęcki, K. Szaniawski, R. Wójcicki, and G. Malinowski, eds.,
Reidel
,
Dordrecht, Holland
, pp. 
229
246
.
46.
Lindley
,
D. V.
,
2006
,
Understanding Uncertainty
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.