In this paper, the robust H-infinity (H) control problem for a premium pricing process is investigated with parameters uncertainty. A previous model is modified by taking into account a predefined risky investment strategy. A robust H control problem for the reserve process is proposed using linear matrix inequality (LMI) criteria. Attention is focused on the design of a state feedback controller such that the resulting closed-loop system is robustly stochastically stable with disturbance attenuation level γ>0. Finally, a numerical example with colorful figures and tables based on the data from the Shanghai Stock Exchange market is provided illustrating clearly the impact of risky investment in the system. The MATLAB LMI Control toolbox is used for the numerical calculations.

References

References
1.
De Finetti
,
B.
,
1957
, “
Su una Impostazione Alternativa Della Theoria Collectiva del Rischio
,”
Transactions of the 15th International Congress of Actuaries
,
New York
, Vol.
II
, pp.
433
443
.
2.
Borch
,
K.
,
1967
, “
The Theory of Risk
,”
J. R. Stat. Soc. (Ser. B)
,
29
(
3
), pp.
432
452
.
3.
Balzer
,
L. A.
, and
Benjamin
,
S.
,
1980
, “
Dynamic Response of Insurance Systems With Delayed Profit/Loss Sharing Feedback to Isolated Unpredicted Claims
,”
J. Inst. Actuaries
,
107
(
4
), pp.
513
528
.10.1017/S0020268100040464
4.
Balzer
,
L. A.
,
1982
, “
Control of Insurance Systems With Delayed Profit/Loss Sharing Feedback and Persisting Unpredicted Claims
,”
J. Inst. Actuaries
,
109
(
2
), pp.
285
316
.10.1017/S0020268100036271
5.
Martin-Löf
,
A.
,
1983
, “
Premium Control in an Insurance System, an Approach Using Linear Control Theory
,”
Scand. Actuarial J.
,
1983
(
1
), pp.
1
27
.10.1080/03461238.1983.10408686
6.
Zimbidis
,
A. A.
, and
Haberman
,
S.
,
2001
, “
The Combined Effect of Delay and Feedback on the Insurance Pricing Process: A Control Theory Approach
,”
Insur. Math. Econ.
,
28
(
2
), pp.
263
280
.
7.
Pantelous
,
A. A.
, and
Yang
,
L.
,
2014
, “
Robust LMI Stability, Stabilization and Hoo Control for Premium Pricing Models With Uncertainties Into a Stochastic Discrete-Time Framework
,”
Insur. Math. Econ.
,
59
, pp.
133
143
.
8.
Pantelous
,
A. A.
, and
Papageorgiou
,
A.
,
2013
, “
On the Robust Stability of Pricing Models for Non-Life Insurance Products
,”
Eur. Actuarial J.
,
3
(
2
), pp.
535
550
.10.1007/s13385-013-0074-8
9.
Xu
,
S.
,
Lam
,
J.
, and
Chen
,
T.
,
2004
, “
Robust H∞ Control for Uncertain Discrete Stochastic Time-Delay Systems
,”
Sys. Control Lett.
,
51
(
3–4
), pp.
203
215
.10.1016/j.sysconle.2003.08.004
10.
Wang
,
Y.
,
Xie
,
L.
, and
de Souza
,
C. E.
,
1992
, “
Robust Control of a Class of Uncertain Nonlinear Systems
,”
Sys. Control Lett.
,
19
(
2
), pp.
139
149
.10.1016/0167-6911(92)90097-C
You do not currently have access to this content.