A Wiener path integral (WPI) technique based on a variational formulation is developed for nonlinear oscillator stochastic response determination and reliability assessment. This is done in conjunction with a stochastic averaging/linearization treatment of the problem. Specifically, first, the nonlinear oscillator is cast into an equivalent linear one with time-varying stiffness and damping elements. Next, relying on the concept of the most probable path, a closed-form approximate analytical expression for the oscillator joint transition probability density function (PDF) is derived for small time intervals. Finally, the transition PDF in conjunction with a discrete version of the Chapman–Kolmogorov (C–K) equation is utilized for advancing the solution in short-time steps. In this manner, not only the nonstationary response PDF but also the oscillator survival probability and first-passage PDF are determined. In comparison with existing numerical path integral schemes, a significant advantage of the proposed WPI technique is that closed-form analytical expressions are derived for the involved multidimensional integrals; thus, the computational cost is kept at a minimum level. The hardening Duffing and the bilinear hysteretic oscillators are considered as numerical examples. Comparisons with pertinent Monte Carlo simulation (MCS) data demonstrate the reliability of the developed technique.

References

References
1.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2007
,
Simulation and the Monte Carlo Method
,
John Wiley & Sons
,
Hoboken, NJ
.
2.
Bucher
,
C.
,
2011
,
Simulation Methods in Structural Reliability
, (Marine Technology and Engineering, Vol. 
2
),
Taylor and Francis
,
Boca Raton, FL
, pp. 
1071
1086
.
3.
Au
,
S.-K.
,
Ching
,
J.
, and
Beck
,
J. L.
,
2007
, “
Application of Subset Simulation Methods to Reliability Benchmark Problems
,”
Struct. Saf.
,
29
(
3
), pp. 
183
193
.10.1016/j.strusafe.2006.07.008
4.
Au
,
S.-K.
, and
Beck
,
J. L.
,
2001
, “
Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation
,”
Probab. Eng. Mech.
,
16
(
4
), pp. 
263
277
.10.1016/S0266-8920(01)00019-4
5.
Schueller
,
G. I.
,
Pradlwarter
,
H. J.
, and
Koutsourelakis
,
P. S.
,
2004
, “
A Critical Appraisal of Reliability Estimation Procedures for High Dimensions
,”
Prob. Eng. Mech.
,
19
(
4
), pp. 
463
474
.10.1016/j.probengmech.2004.05.004
6.
Li
,
J.
, and
Chen
,
J.
,
2009
,
Stochastic Dynamics of Structures
,
John Wiley & Sons
,
Hoboken, NJ
.
7.
Kougioumtzoglou
,
I. A.
,
2013
, “
Stochastic Joint Time-Frequency Response Analysis of Nonlinear Structural Systems
,”
J. Sound Vib.
,
332
(
26
), pp. 
7153
7173
.10.1016/j.jsv.2013.08.024
8.
Spanos
,
P. D.
, and
Kougioumtzoglou
,
I. A.
,
2014
, “
Survival Probability Determination of Nonlinear Oscillators Subject to Evolutionary Stochastic Excitation
,”
J. Appl. Mech.
,
81
(
5
), pp. 
051016-1
051016-9
.10.1115/1.4026182
9.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2009
, “
An Approximate Approach for Nonlinear System Response Determination Under Evolutionary Stochastic Excitation
,”
Curr. Sci.
,
97
(
8
), pp. 
1203
1211
.
10.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2013
, “
Nonlinear MDOF System Stochastic Response Determination via a Dimension Reduction Approach
,”
Compu. Struct.
,
126
, pp. 
135
148
.10.1016/j.compstruc.2012.11.020
11.
Wiener
,
N.
,
1921
, “
The Average of an Analytic Functional
,”
Proc. Natl. Acad. Sci. USA
,
7
(
9
), pp.
253
260
.
12.
Feynman
,
R. P.
,
1948
, “
Space-Time Approach to Non-Relativisic Quantum Mechanics
,”
Rev. Mod. Phys.
,
20
, pp. 
367
387
.10.1103/RevModPhys.20.367
13.
Chaichian
,
M.
, and
Demichiev
,
A.
,
2001
,
Path Integrals in Physics
, Vol. 
1
,
Institute of Physics Publishing
,
Philadelphia
.
14.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2012
, “
An Analytical Wiener Path Integral Technique for Nonstationary Response Determination of Nonlinear Oscillators
,”
Probab. Eng. Mech.
,
28
, pp. 
125
131
.10.1016/j.probengmech.2011.08.022
15.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2014
, “
Nonstationary Stochastic Response Determination of Nonlinear Systems: A Wiener Path Integral Formalism
,”
J. Eng. Mech.
,
140
(
9
), pp. 
04014064-1
04014064-14
.10.1061/(ASCE)EM.1943-7889.0000780
16.
Di Matteo
,
A.
,
Kougioumtzoglou
,
I. A.
,
Pirrotta
,
A.
,
Spanos
,
P. D.
, and
Di Paola
,
M.
,
2014
, “
Non-Stationary Stochastic Response Determination of Nonlinear Oscillators With Fractional Derivatives Elements via the Wiener Path Integral
,”
Probab. Eng. Mech.
,
38
, pp. 
127
135
.10.1016/j.probengmech.2014.07.001
17.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic Press
,
New York
.
18.
Wehner
,
M. F.
, and
Wolfer
,
W. G.
,
1983
, “
Numerical Evaluation of Path Integral Solutions to Fokker-Planck Equations
.”
Phys. Rev. A
,
27
(
5
), pp. 
2663
2670
.10.1103/PhysRevA.27.2663
19.
Naess
,
A.
, and
Johnsen
,
J. M.
,
1993
, “
Response Statistics of Nonlinear, Compliant Offshore Structures by the Path Integral Solution Method
,”
Probab. Eng. Mech.
,
8
(
2
), pp. 
91
106
.10.1016/0266-8920(93)90003-E
20.
Di Paola
,
M.
, and
Santoro
,
R.
,
2008
, “
Path Integral Solution for Nonlinear System Enforced by Poisson White Noise
,”
Probab. Eng. Mech.
,
23
(
2–3
), pp. 
164
169
.10.1016/j.probengmech.2007.12.029
21.
Pirrotta
,
A.
, and
Santoro
,
R.
,
2011
, “
Probabilistic Response of Nonlinear Systems Under Combined Normal and Poisson White Noise via Path Integral Method
,”
Probab. Eng. Mech.
,
26
(
1
), pp. 
26
32
.10.1016/j.probengmech.2010.06.003
22.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2013
, “
Response and First-Passage Statistics of Nonlinear Oscillators via a Numerical Path Integral Approach
,”
ASCE J. Eng. Mech.,
139
(
9
), pp. 
1207
1217
.10.1061/(ASCE)EM.1943-7889.0000564
23.
Kougioumtzoglou
,
I. A.
, and
Spanos
P. D.
,
2014
, “
Stochastic Response Analysis of the Softening Duffing Oscillator and Ship Capsizing Probability Determination via a Path Integral Approach
,”
Probab. Eng. Mech.
,
35
, pp. 
67
74
.10.1016/j.probengmech.2013.06.001
24.
Spanos
,
P. D.
, and
Lutes
,
L. D.
,
1980
, “
Probability of Response to Evolutionary Process
,”
J. Eng. Mech. Div.
,
106
(
2
), pp. 
213
224
.
25.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
1986
, “
Stochastic Averaging: An Approximate Method of Solving Random Vibration Problems
,”
Int. J. Nonlinear Mech.
,
21
(
2
), pp. 
111
134
.10.1016/0020-7462(86)90025-9
26.
Zhu
W. Q.
,
1996
, “
Recent Developments and Applications of the Stochastic Averaging Method in Random Vibration
,”
Appl. Mech. Rev.
,
49
(
10S
), pp. 
72
80
.10.1115/1.3101980
27.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
2003
,
Random Vibration and Statistical Linearization
,
Dover Publications
,
New York
.
28.
Taniguchi
,
T.
, and
Cohen
,
E. G. D.
,
2008
, “
Inertial Effects in Non-Equilibrium Work Fluctuations by a Path Integral Approach
,”
J. Stat. Phy.
,
130
(
1
), pp. 
1
26
.10.1007/s10955-007-9398-6
29.
Ewing
,
G. M.
,
1985
,
Calculus of Variations with Applications
,
Dover Publications
,
Mineola, NY
.
30.
Solomos
,
G. P.
, and
Spanos
,
P. D.
,
1984
, “
Oscillator Response to Nonstationary Excitation
,”
ASME J. Appl. Mech.
,
51
(
4
), pp. 
907
912
.10.1115/1.3167745
31.
Dekker
,
H.
,
1976
, “
Time-Local Gaussian Processes, Path Integrals and Nonequilibrium Nonlinear Diffusion
,”
Physica
,
85A
(
2
), pp. 
363
373
.10.1016/0378-4371(76)90055-8
32.
Iourtchenko
,
D.
,
Mo
,
E.
, and
Naess
,
A.
,
2008
, “
Reliability of Strongly Nonlinear Single Degree of Freedom Dynamic Systems by the Path Integration Method
,”
J. Appl. Mech.
,
75
(
6
), pp. 
061016-1
061016-8
.10.1115/1.2967896
33.
Chatterjee
,
P.
, and
Basu
,
B.
,
2006
, “
Nonstationary Seismic Response of a Tank on a Bilinear Hysteretic Soil Using Wavelet Transform
,”
Probab. Eng. Mech.
,
21
(
1
), pp. 
54
63
.10.1016/j.probengmech.2005.07.004
34.
Spanos
,
P. D.
, and
Giaralis
,
A.
,
2013
, “
Third-Order Statistical Linearization-Based Approach to Derive Equivalent Linear Properties of Bilinear Hysteretic Systems for Seismic Response Spectrum Analysis
,”
Struct. Saf.
,
44
, pp. 
59
69
.10.1016/j.strusafe.2012.12.001
35.
Iwan
,
W. D.
,
1965
, “
The Steady-State Response of a Two-Degree-of-Freedom Bilinear Hysteretic System
,”
J. Appl. Mech.,
32
(
1
), pp. 
151
156
.10.1115/1.3625711
36.
Caughey
,
T. K.
,
1960
, “
Random Excitation of a System with Bilinear Hysteresis
,”
J. Appl. Mech.
,
27
(
4
), pp. 
649
652
.10.1115/1.3644077
You do not currently have access to this content.