When an engineering system has the ability to change or adapt based on a future choice, then flexibility can become an important component of that system’s total value. However, evaluating noncommercial flexible systems, like those in the defense sector, presents many challenges because of their dynamic nature. Designers intuitively understand the importance of flexibility to hedge against uncertainties. In the naval domain, however, they often do not have the tools needed for analysis. Thus, decisions often rely on engineering experience. As the dynamic nature of missions and new technological opportunities push the limits of current experience, a more rigorous approach is needed. This paper describes a novel framework for evaluating flexibility in noncommercial engineering systems called prospect theory-based real options analysis (PB-ROA). While this research is motivated by the unique needs of the U.S. Navy ship design community, the framework abstracts the principles of real options analysis to suit noncommercial assets that do not generate cash flows. One contribution of PB-ROA is a systematic method for adjusting agent decisions according to their risk tolerances. The paper demonstrates how the potential for loss can dramatically affect decision making through a simplified case study of a multimission variant of a theoretical high-speed connector vessel.

References

References
1.
Trigeorgis
,
L.
,
1995
, “
Real Options: An Overview
,”
Real Options in Capital Investment: Models, Strategies, and Applications
,
L.
Trigeorgis
, ed.,
Praeger Publishers
,
Westport, CT
, pp. 
1
28
.
2.
Parker
,
M.
, and
Singer
,
D. J.
,
2012
, “
Flexibility and Modularity in Ship Design: An Analytical Approach
,”
Proceedings of the 11th International Marine Design Conference
, Vol. 
1
,
University of Strathclyde
,
Glasgow, Scotland
, pp. 
385
396
.
3.
Koenig
,
P.
,
2009
,
Real Options in Ship and Force Structure Analysis: A Research Agenda
,
American Society of Naval Engineers, ANSE Day
,
National Harbor, MD
.
4.
Gregor
,
J. A.
,
2003
, “
Real Options for Naval Ship Design and Acquisition: A Method for Valuing Flexibility under Uncertainty
,” Master’s thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
5.
Page
,
J.
,
2011
, “
Flexibility in Early Stage Design of US Navy Ships: An Analysis of Options
,” Master’s thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
6.
Gonzalez-Zugasti
,
J.
,
Otto
,
K.
, and
Whitcomb
,
C.
,
2007
, “
Options-Based Multi-Objective Evaluation of Product Platforms
,”
Naval Eng. J.
,
119
(
3
), pp. 
89
106
.10.1111/j.1559-3584.2007.00070.x
7.
Koenig
,
P.
,
Nalchajian
,
D.
, and
Hootman
,
J.
,
2008
,
Ship Service Life and Naval Force Structure
,
American Society of Naval Engineers, ANSE Day; Engineering the Total Ship
,
Tysons Corner, VA
.
8.
Koenig
,
P.
,
Czapiewski
,
P.
, and
Hootman
,
J.
,
2008
, “
Synthesis and Analysis of Future Naval Fleets?
Ships Offshore Struct.
,
3
(
2
), pp. 
81
89
.
9.
Wang
,
T.
, and
de Neufville
,
R.
,
2005
, “
Real Options in Projects
,”
9th Real Options Annual International Conference
, Paris, France.
10.
Wang
,
T.
, and
de Neufville
,
R.
,
2006
, “
Identification of Real Options in Projects
,”
4th Conference on Systems Engineering Research
,
Los Angeles, CA
.
11.
Engel
,
A.
, and
Browning
,
T. R.
,
2008
, “
Designing Systems for Adaptability by Means of Architecture Options
,”
Syst. Eng.
,
11
, pp. 
125
146
.10.1002/(ISSN)1520-6858
12.
Martin
,
I. F.
,
2008
,
Valuation of Design Adaptability in Aerospace Systems
, Ph.D. thesis,
Georgia Institute of Technology
, Atlanta, GA.
13.
Davis
,
M. H.
,
2009
, “
Option Pricing in Incomplete Markets
,”
Mathematics of Derivative Securities
,
M.
Dempster
, and
S.
Pliska
, eds.,
Cambridge University Press
,
New York
, pp. 
216
226
.
14.
Beja
,
A.
,
1967
, “
Capital Markets with Delayed ‘Learning’
,” Ph.D. thesis,
Stanford University
, Stanford, CA.
15.
Nau
,
R. F.
, and
McCardle
,
K. F.
,
1991
, “
Arbitrage, Rationality, and Equilibrium
,”
Theory Decis.
,
31
, pp. 
199
240
.
16.
Hugonnier
,
J.
,
Kramkov
,
D.
, and
Schachermayer
,
W.
,
2005
, “
On Utility-Based Pricing of Contingent Claims in Incomplete Markets
,”
Math. Finance
,
15
(
2
), pp. 
203
212
.
17.
Kahneman
,
D.
, and
Tversky
,
A.
,
1979
, “
Prospect Theory: An Analysis of Decision Under Risk
,”
Econometrica
,
47
(
2
), pp. 
263
291
.10.2307/1914185
18.
Kahneman
,
D.
, and
Tversky
,
A.
,
1984
, “
Choices, Values, and Frames
,”
Am. Psychologist
,
39
(
4
), pp. 
341
350
.10.1037/0003-066X.39.4.341
19.
Ben-Haim
,
Y.
,
2001
,
Information-Gap Decision Theory: Decisions Under Severe Uncertainty
,
Academic Press
,
Oxford, UK
.
20.
Fama
,
E. F.
,
2000
, “
Efficient Capital Markets: A Review of Theory and Empirical Work
,”
J. Finance
,
25
(
2
), pp. 
383
417
.
21.
Kifer
,
Y.
,
2000
, “
Game Options
,”
Finance Stochastics
,
4
, pp. 
443
463
.
22.
Smit
,
H. T.
, and
Ankum
,
L.
,
1993
, “
A Real Options and Game-Theoretic Approach to Corporate Investment Strategy Under Competition
,”
Financial Manage.
,
22
(
3
), pp. 
241
250
.
23.
Lukas
,
E.
,
Reuer
,
J. J.
, and
Welling
,
A.
,
2012
, “
Earnouts in Mergers and Acquisitions: A Game-Theoretic Option Pricing Approach
,”
Euro. J. Operational Res.
, (
223
), pp. 
256
263
.
24.
Villani
,
G.
,
2008
, “
An R&D Investment Game Under Uncertainty in Real Option Analysis
,”
Comput. Econ.
,
32
, pp. 
199
219
.
25.
Smit
,
H. T.
,
2003
, “
Infrastructure Investment as a Real Options Game: The Case of European Airport Expansion
,”
Financial Manage.
,
32
(
4
), pp. 
27
57
.
26.
Smit
,
H. T.
, and
Trigeorgis
,
L.
,
2006
, “
Real Options and Games: Competition, Alliances and Other Applications of Valuation and Strategy
,”
Rev. Financial Econ.
,
15
, pp. 
95
112
.
27.
Smit
,
H. T.
, and
Trigeorgis
,
L.
,
2007
, “
Strategic Options and Games in Analysing Dynamic Technology Investments
,”
Long Range Plann.
,
40
, pp. 
84
114
.
28.
Rigterink
,
D.
,
Collette
,
M.
, and
Singer
,
D. J.
,
2012
, “
A Novel Structural Complexity Metric and its Impact on Structural Cost Estimating
,”
Proceedings of the 11th International Marine Design Conference
, Vol.
2
,
University of Strathclyde
,
Glasgow, Scotland
, pp. 
535
544
.
29.
Whitcomb
,
C.
,
1998
, “
Naval Ship Design Philosophy Implementation
,”
Naval Eng. J.
,
110
(
1
), pp. 
49
63
.10.1111/nej.1998.110.issue-1
30.
Abdellaoui
,
M.
,
2000
, “
Parameter-Free Elicitation of Utility and Probability Weighting Functions
,”
Manage. Sci.
,
46
(
11
), pp. 
1497
1512
.10.1287/mnsc.46.11.1497.12080
31.
Abdellaoui
,
M.
,
Bleichrodt
,
H.
, and
Haridon
,
O. L.
,
2008
, “
A Tractable Method to Measure Utility and Loss Aversion Under Prospect Theory
,”
J. Risk Uncertainty
,
36
(
3
), pp. 
245
266
.10.1007/s11166-008-9039-8
32.
Yu
,
J.-C.
, and
Ishii
,
K.
,
1998
, “
Design for Robustness Based on Manufacturing Variation Patterns
,”
J. Mech. Design
,
120
(
2
), pp. 
196
202
.
You do not currently have access to this content.