In this work, a novel analytical framework is proposed for the risk-based design of complex engineering systems. The risk based-design process is the reverse process of risk propagation that entails the optimum allocation of the desired risk of failure of the system to all of its components. This paper studies the challenges in the design process of complex systems, the mathematical modeling of their topological architecture, and their unique behaviors. These characteristics make it impossible for the designer to use the common reliability and risk methodologies in the design process. The fundamental development of this work is an analytical upper bound for the distribution of risk of failure in the subsystem or element level. This upper bound satisfies the subadditivity condition of a coherent measure of risk. Additionally, its simplicity and low computational cost provide an appropriate framework as a fundamental building block for the risk-based design of complex systems. The proposed methodology is applied to three examples with insignificant desired probability of failure and its accuracy is compared with the Monte Carlo simulation, demonstrating its effectiveness and value.

References

References
1.
Song
,
C.
,
Havlin
,
S.
, and
Makse
,
H. A.
,
2005
, “
Self-Similarity of Complex Networks
,”
Lett. Nat.
,
433
(7024), pp. 
392
395
.
2.
Strogatz
,
D. J.
,
1998
, “
Collective Dynamics of Small World Networks
,”
Nature
,
393
(6684), pp. 
440
443
.
3.
Havlin
,
R. C.
,
2010
,
Complex Networks: Structure, Robustness and Function
,
Cambridge University Press
,
Cambridge, UK
.
4.
Albert
,
R.
,
Jeong
,
H.
,
Barabási
,
A.-L.
,
2000
, “
Error and Attack Tolerance of Complex Networks
,”
Nature
,
406
(6794), pp. 
378
382
.
5.
Cohen
,
R.
,
Havlin
,
S.
,
Ben-Avraham
,
D.
,
2002
, “Structural Properties of Scale Free Networks,”
Handbook of Graphs and Networks: From the Genome to the Internet
,
S. Bornholdt
, and
H. G. Schuster
, eds.,
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
.
6.
Stanley
,
J. G.
,
2011
, “
Robustness of a Network of Networks
,”
Phys. Rev. Lett.
,
107
(19), p.
195701
.
7.
National Research Council
,
2007
, “
New Directions for Understanding Systemic Risk: A Report on a Conference Cosponsered by the Federal Reserve Bank of New York and the National Academy of Sciences
.”
The National Academies Press
,
Washington, D.C.
.
8.
May
,
R. L.
,
2008
, “
Ecology for Bankers
,”
Nature
,
451
(7181), pp.
893
895
.
9.
Scheffer
,
M. B.
,
2009
, “
Early Warning Signals for Critical Transitions
,”
Nature
,
461
(7260), pp.
53
59
.
10.
Taleb
,
N.
,
2010
, “
The Black Swan: The Impact of the Highly Improbable: On Robustness and Fragility
.”
2nd ed.
,
Random House and Penguin
,
New York
.
11.
Kurtoglu
,
T.
, and
Tumer
,
I. Y.
,
2007
, “
FFIP: A Framework for Early Assessment of Functional Failures in Complex Systems
,”
ICED, Cite des Sciences et de L’industrie, Paris, France
.
12.
Dubourg
,
V.
,
Deheeger
,
F.
,
Sudret
,
B.
,
2011
, “
Metamodel-Based Importance Sampling for the Simulation of Rare Events
,”
Proceedings of the 11th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP11)
, M. Faber
,
J. Köhler
, and
K. Nishijima
, eds.,
Zurich, Switzerland
.
13.
Artzner
P.
,
Delbaen
F.
,
Eber
J. M.
,
Heath
D.
,
1997
, “
Thinking Coherently
,”
Risk
,
10
(
11
), pp. 
68
71
.
14.
Artzner
P.
,
Delbaen
F.
,
Eber
J. M.
,
Heath
D.
,
1999
, “
Coherent Measures of Risk
,”
Math. Finance
,
9
(
3
), pp. 
203
228
.
15.
Golbayani
,
H.
,
Kazerounian
,
K.
,
2008
, “
Optimum Error Allocation in Kinematic Chains Using Geometric Programming
,”
Proceedings of the ASME Design Engineering Technology Conference
, 2B, pp. 
1241
1248
.
16.
Kiureghian
,
A. D.
,
2004
, “
First- and Second-Order Reliability Methods
,”
Engineering Design Reliability Handbook
,
E. Nikolaidis
,
D. M. Ghiocel
, and
S. Singhal
, eds.,
CRC Press
,
Boca Raton, FL
(Chap. 14).
17.
Nikolaidis
,
E.
,
Ghiocel
,
D. M.
,
Singhal
,
S.
,
2004
,
Engineering Design Reliability Handbook
,
CRC Press
,
Boca Raton, FL
.
18.
Chan
,
K. Y.
,
2006
, “
Monotonicity and Active Set Strategies in Probabilistic Design Optimization
,”
ASME J. Mech. Des.
,
128
(4), pp. 
893
900
.
19.
Modarres
,
M.
,
2006
,
Risk Analysis in Engineering: Techniques, Tools, Trends
,
CRC Press
,
Boca Raton, FL
.
20.
Agarwal
,
H. A.
, and
Renaud
,
J.
,
2002
, “
Reliability Based Design Optimization for Multidisciplinary Systems Using Response Surfaces
,”
43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Denver, CO
, p.
1755
.
21.
Rackwitz
R.
,
Fiessler
,
B.
,
1978
, “
Structural Reliability Under Combined Random Load Sequences
,”
Comput. Struct.
,
9
(
5
), pp. 
489
494
.
22.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
(
3
), pp. 
470
472
.
23.
Brockwell
,
A. E.
,
2007
, “
Universal Residuals: A Multivariate Transformation
,”
Stat. Probab. Lett.
,
77
(
14
), pp. 
1473
1478
.
24.
Alkarni
,
S. H.
,
Siddiqui
,
M. M.
,
2001
, “
An Upper Bound for the Distribution Function of a Positive Definite Quadrative Form
,”
J. Statist. Comput. Simul.
,
69
(1), pp. 
41
56
.
25.
Mathai
,
A. M.
,
Provost
,
S. B.
,
1992
,
Quadratic Forms in Random Variables, Theory and Applications
,
Marcel Dekker Inc.
,
New York
.
26.
Okamoto
,
M.
,
1960
, “
An Inequality for the Weighted Sum of χ2 Variates
,”
Bull. Math. Statist.
,
9
(2/3), pp. 
69
70
.
27.
Ruben
,
H.
,
1962
, “
Probability Content of Regions Under Spherical Normal Distributions, IV: The Distribution of Homogeneous and Non-homogeneous Quadratic Functions of Normal Variables
,”
Ann. Math. Statist.
,
33
(
2
), pp. 
542
570
.
28.
Hayden
,
A. F.
, and
Twede
,
D. R.
,
2002
, “
Observations on the Relationship Between Eigenvalues, Instrument Noise and Detection Performance
,”
Proc. SPIE
,
4816
(
Imaging Spectrometry VIII
), pp. 
355
362
.
29.
Braunstein
,
L. A.
,
Wu
,
Z.
,
Chen
,
Y.
,
Buldyrev
,
S. V.
,
Sreenivasan
,
S.
,
Kalisky
,
T.
,
Cohen
,
R.
,
Lopez
,
E.
,
Havlin
,
S.
,
Stanley
,
H. E.
,
2007
, “
Optimal Path and Minimal Spanning Trees in Random Weighted Networks
,”
Int. J. Bifurcation Chaos
,
17
(
7
), pp. 
2215
2255
.
30.
Souma
,
W.
,
Fujiwara
,
Y.
, and
Aoyama
,
H.
,
2005
, “
Heterogeneous Economic Networks
,”
The Complex Networks of Economic Interactions: Essays in Agent-Based Economics and Econophysics
, (Lecture Notes in Economics and Mathematical Systems, Vol. 567)
A. Namatame
et al., eds.,
Springer-Verlag
,
Tokyo, Japan
, pp. 
79
92
.
31.
Wilensky
,
U.
,
1999
,
NetLogo Itself
,
Center for Connected Learning and Computer-Based Modeling, Northwestern University
,
Evanston, IL
.
32.
Lima
,
M.
,
2011
,
Visual Complexity: Mapping Patterns of Information
,
Princeton Architectural Press
,
New York
.
33.
Engelbrecht
,
A.
,
2010
,
Fundamentals of Computational of Swarm Intelligence
,
Wiley
,
Hoboken, NJ
.
34.
Luke
,
S.
,
2013
,
Essentials of Metaheuristics
,
2nd ed.
,
Lulu
. http://cs.gmu.edu/∼sean/book/metaheuristics/.
You do not currently have access to this content.