Abstract

Corrosion is one of the most critical issues in the oil and gas industry, leading to severe environmental and economic problems. Due to the high cost and serious safety risk of corrosion, it is essential to improve current corrosion testing techniques to detect corrosion damages at an early stage. Guided wave tomography (GWT) demonstrates its great potential to inspect and quantify the corrosion damage. GWT is capable of determining the residual life of corrosion structures by quantifying the remaining wall thickness. In this paper, an accurate guided wave tomography technique incorporating full waveform inversion (FWI) and higher-order Lamb waves (A1 mode) is presented for plate-like structures, which is able to get high-resolution reconstruction results. The technique consists of three steps: forward modeling, velocity inversion and thickness reconstruction. The forward modeling is computed by solving the elastic full-wave equations in 2-D time domain by using the finite difference method. High-resolution phase velocity inversion can then be obtained by minimizing the waveform misfit function between simulated and recorded data using a second order optimization method, which updates the velocity model from low to high frequencies iteratively. Finally, the velocity variations can be transformed into depth profiles by using the dispersive characteristics of ultrasonic guided waves; therefore, the thickness reconstruction can be obtained. The numerical simulations are performed on an aluminum plate with a complicated corrosion defect. By comparing the thickness reconstruction maps using both A1 and A0 modes, the results demonstrate that FWI with A1 mode can achieve significantly better resolution of corrosion imaging than that with A0 mode.

This content is only available via PDF.
You do not currently have access to this content.