Abstract
Nonlinear ultrasonic guided waves have superior sensitivity of the early fatigue damage. This paper investigates the analysis of the second harmonics of Lamb waves in a free boundary aluminum plate, and the internal resonance conditions between the Lamb wave primary modes and the second harmonics. The Murnaghan’s model is implemented in a finite element (FE) analysis to describe the hyperelastic constitutive relation for nonlinear acoustic modeling. The second harmonics of s0 mode are actuated by a 60kHz Hanning-windowed tone burst. A guided wave signal processing platform is developed for tomographic imaging. The different stages of fatigue are reflected by the changes of third-order elastic constants (TOECs) in Murnaghan’s model. The reconstructed damage locations match well with the actual ones cross different degrees and depths of fatigue.