Abstract

Centrifugally cast stainless steel (CCSS) is widely used in PWR primary coolant systems. However, ultrasonic testing for such material is very challenging because its coarse grains and anisotropic property. The phased array ultrasonic technology (PAUT) is considered the most promising solution to the problem mentioned. To improve the accuracy of PAUT for CCSS with columnar grains, we used the voxel-based finite element method to perform simulation of wave propagation in CCSS, where waves were excited by a linear array. We modeled columnar grains in CCSS with hexagonal columns and introduced a side-drilled hole. It was easily to have different inclined columnar grains by rotating the crystal axes. All column crystals were considered cubic crystals while CCSS with columnar grains was macroscopically transversely isotropic. Wave propagations were computed for different focal laws and their results were compared. Waves exactly propagated toward and focused at the targeted SDH when focal laws were calculated according to the anisotropic property of CCSS, but deviated the target for focal laws based on isotropy.

This content is only available via PDF.
You do not currently have access to this content.