Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-2 of 2
Poles (Building)
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research Papers
J. Pressure Vessel Technol. August 2005, 127(3): 274–283.
Published Online: March 1, 2005
Abstract
This paper describes the design of a new magnetic flux leakage (MFL) inspection tool that performs an inline inspection to detect and characterize both metal loss and mechanical damage defects. An inspection tool that couples mechanical damage assessment as part of a routine corrosion inspection is expected to have considerably better prospects for application in the pipeline industry than a tool that complicates existing procedures. The design is based on study results that show it is feasible to detect and assess mechanical damage by applying a low magnetic field level in addition to the high magnetic field employed by most inspection tools. Nearly all commercially available MFL tools use high magnetic fields to detect and size metal loss such as corrosion. A lower field than is commonly applied for detecting metal loss is appropriate for detecting mechanical damage, such as the metallurgical changes caused by impacts from excavation equipment. The lower field is needed to counter the saturation effect of the high magnetic field, which masks and diminishes important components of the signal associated with mechanical damage. Finite element modeling was used in the design effort and the results have shown that a single magnetizer with three poles is the most effective design. Furthermore, it was found that for the three-pole system the high magnetization pole must be in the center, which was an unexpected result. The three-pole design has mechanical advantages, including a magnetic null in the backing bar, which enables installation of a pivot point for articulation of the tool through bends and restrictions. This design was prototyped and tested at Battelle’s Pipeline Simulation Facility (West Jefferson, OH). The signals were nearly identical to results acquired with a single magnetizer reconfigured between tests to attain the appropriate high and low field levels.
Journal Articles
Article Type: Research Papers
J. Pressure Vessel Technol. November 1996, 118(4): 447–453.
Published Online: November 1, 1996
Abstract
A method, MIM (magnetic interrogation method), is proposed for nondestructive measurement of radiation damage of nuclear reactor pressure vessels. The method relies on good correlation between the levels of radiation-induced hardness change and magnetic coercivity change in pressure vessel steel. A part of the pressure vessel to be inspected is magnetized with two-pole magnetic yokes through the overlay clad of nonmagnetic stainless steel, and magnetic field distributions on the surface of overlay clad are measured in the vicinity of the poles of magnetic yokes. Then, the coercivity distribution in the direction of thickness in the pressure vessel steel is inversely estimated from the measured magnetic field distribution patterns with aid of static magnetic field analysis. The level of radiation damage such as hardness change is assessed with relation to the estimated coercivity distributions.