Sloshing response of a cylindrical liquid storage tank with the double deck type floating roof (DDFR) subjected to seismic excitation is considered in this paper. The aim of the paper is to clarify the significant parameters that should be considered in the seismic design of a DDFR and proposing a practical seismic design procedure for evaluating the dynamic stresses inside a DDFR. A numerical method including fluid–structure interaction and the geometry details of a DDFR tank are established. The geometric nonlinear effects on the seismic behavior of the DDFR as well as the accuracy of common analytical solution suggested in the literature are examined by the numerical model. The numerical results show that the geometric nonlinear effects can considerably reduce the seismic stress in DDFR, but have no significant effect on the liquid hydrodynamic pressure exerted on the DDFR and the roof's vertical displacement. It is also revealed that not only the general displacement of DDFR but also the local effects of liquid hydrodynamic pressure on the bottom plate should be considered for seismic design of a DDFR. Finally, a design procedure for the evaluation of dynamic stress in the DDFR due to the seismic loads is proposed and discussed.

References

1.
Goudarzi
,
M. A.
, and
Sabbagh-Yazdi
,
S. R.
,
2008
, “
Evaluating 3D Earthquake Effects on Sloshing Wave Height of Liquid Storage Tanks Using Finite Element Method
,”
J. Seismol. Earthquake Eng.
,
10
(
3
), pp.
123
136
2.
Goudarzi
,
M. A.
, and
Sabbagh-Yazdi
,
S. R.
,
2009
, “
Numerical Investigation on Accuracy of Mass Spring Models for Cylindrical Tanks under Seismic Excitation
,”
Int. J. Civil Eng.
,
7
(
3
), pp.
190
202
.
3.
Goudarzi
,
M. A.
,
Sabbagh-Yazdi
,
S. R.
, and
Marx
,
W.
,
2010
, “
Seismic Analysis of Hydrodynamic Sloshing Force on Storage Tank Roof
,”
J. Earthquake Spectra
,
26
(
1
), pp.
131
152
.10.1193/1.3283902
4.
Hatayama
,
K.
,
Zama
,
S.
,
Nishi
,
H.
,
Yamada
,
M.
,
Hirokawa
,
M.
, and
Inoue
,
R.
,
2005
, “
The Damages of Oil Storage Tanks During the 2003 Tokachi-Oki Earthquake and the Long Period Ground Motions
,”
Zisin
,
57
(
2
), pp.
83
103
(in Japanese).
5.
Sogabe
,
K.
, and
Sibata
,
H.
,
1974
, “
Response Analysis on Sloshing of Liquid in a Cylindrical Storage-I, Basic Equation and Response to Sinusoidal Input
,”
Seisan-Kenkyu
,
26
(
3
), pp.
119
122
.
6.
Nakagawa
,
K.
,
1956
, “
On the Vibration of an Elevated Water Tank
,”
Tech. Rep. Osaka Univ.
,
15
(
170
), pp.
317
336
.
7.
Kondo
,
H.
,
1984
, “
Analysis of Rigid Body Motion of Floating Roofs
,”
Proceedings of Spring Annual Meeting
, Japan Society of Mechanical Engineers (in Japanese), Vol.
840
, pp.
185
187
.
8.
Sakai
,
F.
,
Nishimura
,
M.
, and
Ogawa
,
H.
,
1984
, “
Sloshing Behavior of Floating-Roof Oil Storage Tanks
,”
Comput. Struct.
,
19
(
1
), pp.
183
192
.10.1016/0045-7949(84)90217-7
9.
Matsui
,
T.
,
2007
, “
Sloshing in a Cylindrical Liquid Storage Tank With a Floating Roof Under Seismic Excitation
,”
ASME J. Pressure Vessel Technol.
,
129
(
4
), pp.
557
566
.10.1115/1.2767333
10.
Miura
,
M.
, and
Kikuchi
,
T.
, “
The Sloshing Simulation of Floating Roof Tank
,”
ASME
Paper No. PVP2005-71439.10.1115/PVP2005-71439
11.
Utsumi
,
M.
, and
Ishida
,
K.
,
2008
, “
Vibration Analysis of a Floating Roof Taking Into Account the Nonlinearity of Sloshing
,”
ASME J. Appl. Mech.
75
(
4
), p.
041008
.10.1115/1.2912739
12.
Utsumi
,
M.
,
Ishida
,
K.
, and
Hizume
,
M.
,
2010
, “
Internal Resonance of a Floating Roof Subjected to Nonlinear Sloshing
,”
ASME J. Appl. Mech.
,
77
(
1
), p.
011016
.10.1115/1.3173768
13.
Utsumi
,
M.
, and
Ishida
,
K.
,
2010
, “
Vibration Analysis of a Floating Roof Subjected to Radial Second Mode of Sloshing
,”
ASME J. Pressure Vessel Technol.
,
132
(
2
), p.
021303
.10.1115/1.3148083
14.
Yoshida
,
S.
,
Sekine
,
K.
, and
Mitsuta
,
T.
,
2008
, “
Axisymmetric Finite Element Analysis for Sloshing Response of Floating Roofs in Cylindrical Storage Tanks
,”
Trans. Jpn. Soc.Mech. Eng.
,
74
(
740
), pp.
814
822
.10.1299/kikaic.74.814
15.
Nishi
,
H.
,
Yamada
,
M.
,
Zama
,
S.
,
Hirokawa
,
Y.
,
Sekine
,
K.
,
Minowa
,
C.
, and
Mikoshiba
,
T.
,
2007
, “
Experimental Study on Sloshing Behavior of Floating Roofs by Using Small-Scale Cylindrical Tank
,”
J. High Pressure Inst. Jpn.
,
45
(
3
), pp.
118
126
.
16.
Nishi
,
H.
,
Yamada
,
M.
,
Zama
,
S.
,
Hatayama
,
K.
,
Sekine
,
K.
,
Mikoshiba
,
T.
, and
Minowa
,
C.
,
2007
, “
Experimental Study on Sloshing Behavior of Floating Roofs by Using Small-Scale Cylindrical Tank—Effect of the Second Order Sloshing Mode
,”
J. High Pressure Inst. Jpn.
,
45
(
6
), pp.
357
363
.
17.
Nishi
,
H.
,
Yamada
,
M.
,
Zama
,
S.
,
Hatayama
,
K.
, and
Sekine
,
K.
,
2008
, “
Experimental Study on the Sloshing Behavior of the Floating Roof Using a Real Tank
,”
J. High Pressure Inst. Jpn.
,
46
(
1
), pp.
4
17
.
18.
Nishi
,
H.
,
Yamada
,
M.
,
Zama
,
S.
,
Hatayama
,
K.
,
Sekine
,
K.
,
Mikoshiba
,
T.
, and
Minowa
,
C.
,
2008
, “
Experimental Study on the Estimation of the Amount of Overflowed Oil due to Liquid Sloshing of Oil Storage Tank
,”
J. High Pressure Inst. Jpn.
,
46
(
5
), pp.
276
284
19.
Goudarzi
,
M. A.
,
2012
, “
Seismic Behavior of a Single Deck Floating Roof due to Second Sloshing Mode
,”
ASME J. Pressure Vessel Technol.
,
135
(
1
), p.
011801
.10.1115/1.4007291
20.
Chalhoub
,
M.
, and
Kelly
,
J.
,
1990
, “
Shake Table Test of Cylindrical Water Tanks in Base Isolated Structures
,”
J. Eng. Mech.
,
116
(
7
), pp.
1451
1472
.10.1061/(ASCE)0733-9399(1990)116:7(1451)
21.
Young
,
W.
, and
Budynas
,
R.
,
2011
,
Roark's Formulas for Stress and Strain
, 8 ed.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.