Abstract

As the ultimate protection of a pressure system, pressure safety valves (PSV) can respond in an unstable manner in the form of flutter and chatter, which will affect service life, reliability, and performance. In order to study the dynamic instability caused by multisource forces including the flow force, the spring compression force, and the pressure wave forces, a high-fidelity computational fluid dynamics (CFD) model of the system is proposed. A complete CFD model, incorporating the PSV, connected pipes, and the pressure vessel, is developed, in which advanced techniques in Fluent using User Defined Function (UDF) and Dynamic Layering method are combined to allow the PSV to be coupled to the system dynamics. Based on this model, the valve's opening and reclosing process is monitored to examine the influence of design parameters on the dynamic instability of the PSV. Specifically, the propagation of pressure waves along the connecting pipes is successfully captured, helping to assess the instability mechanism and provide the ability to optimize the design and setup of pressure relief systems.

References

References
1.
Frommann
,
O.
, and
Friedel
,
L.
,
1998
, “
Analysis of Safety Relief Valve Chatter Induced by Pressure Wave in Gas Flow
,”
J. Loss Prev. Process Ind.
,
11
(
4
), pp.
279
290
.10.1016/S0950-4230(97)00040-5
2.
Aldeeb
,
A. A.
,
Darby
,
R.
, and
Arndt
,
S.
,
2014
, “
The Dynamic Response of Pressure Relief Valves in Vapor or Gas Service—Part II: Experimental Investigation
,”
J. Loss Prev. Process Ind.
,
31
, pp.
127
141
.10.1016/j.jlp.2014.06.002
3.
Zheng
,
Z. J.
,
Ou
,
C. F.
,
Yi
,
Y. W.
,
Shu
,
G. P.
,
Jin
,
H. Z.
,
Wang
,
C.
, and
Ye
,
H. J.
,
2016
, “
A Combined Numerical-Experiment Investigation on the Failure of a Pressure Relief Valve in Coal Liquefaction
,”
Eng. Failure Anal.
,
60
, pp.
326
340
.10.1016/j.engfailanal.2015.11.055
4.
Boccardi
,
G.
,
Bubbico
,
R.
,
Piero Celata
,
G.
, and
Di Tosto
,
F.
,
2008
, “
Geometry Influence on Safety Valves Sizing in Two-Phase Flow
,”
J. Loss Prev. Process Ind.
,
21
(
1
), pp.
66
73
.10.1016/j.jlp.2007.07.002
5.
Erdődi
,
I.
, and
Hős
,
C.
,
2017
, “
Prediction of Quarter-Wave Instability in direct spring Operated Pressure Relief Valves With Upstream Piping by Means of CFD and Reduced Order Modelling
,”
J. Fluids Struct.
,
73
, pp.
37
52
.10.1016/j.jfluidstructs.2017.05.003
6.
Zhang
,
J.
,
Yang
,
L.
,
Dempster
,
W.
,
Yu
,
X. H.
,
Jia
,
J. H.
, and
Tu
,
S. T.
,
2018
, “
Prediction of Blowdown of a Pressure Relief Valve Using Response Surface Methodology and CFD Techniques
,”
Appl. Therm. Eng.
,
133
, pp.
713
726
.10.1016/j.applthermaleng.2018.01.079
7.
Misra
,
A.
,
Behdinan
,
K.
, and
Cleghorn
,
W. L.
,
2002
, “
Self-Exited Vibration of a Control Valve Due to Fluid-Structure Interaction
,”
J. Fluid Struct.
,
16
(
5
), pp.
649
665
.10.1006/jfls.2002.0441
8.
Cremers
,
J.
, and
Friedel
,
L.
,
2003
, “
Design of Spring-Loaded Safety Valves With Inlet and Discharge Pipe Against Chatter in the Case of Gas Flow
,”
Chem. Eng. Technol.
,
26
(
5
), pp.
573
576
. Volume Issue10.1002/ceat.200390087
9.
Suzuki
,
K.
, and
Urata
,
E.
,
2005
, “
Dynamic Characteristics of a Direct-Pressure Sensing Water Hydraulic Relief Valve
,”
Sixth JFPS International Symposium on Fluid Power, Tsukuba
, Japan, Nov. 7–10, pp.
461
466
.10.5739/isfp.2005.461
10.
Darby
,
R.
,
2013
, “
The Dynamic Response of Pressure Relief Valves in Vapor or Gas Service—Part I: Mathematical Model
,”
J. Loss Prev. Process Ind.
,
26
(
6
), pp.
1262
1268
.10.1016/j.jlp.2013.07.004
11.
Hős
,
C.
,
Bazsó
,
C.
, and
Champneys
,
A.
,
2015
, “
Model Reduction of a Direct Spring-Loaded Pressure Relief Valve With Upstream Pipe
,”
IMA J. Appl. Math.
,
80
(
4
), pp.
1009
1024
.10.1093/imamat/hxu034
12.
Ranginkaman
,
M.
,
Haghighi
,
A.
, and
Lee
,
P.
,
2019
, “
Frequency Domain Modelling of Pipe Transient Flow With the Virtual Valves Method to Reduce Linearization Errors
,”
Mech. Syst. Signal Process.
,
131
, pp.
486
504
.10.1016/j.ymssp.2019.05.065
13.
Darby
,
R.
, and
Aldeeb
,
A. A.
,
2014
, “
The Dynamic Response of Pressure Relief Valves in Vapor or Gas Service—Part III: Model Validation
,”
J. Loss Prev. Process Ind.
,
31
, pp.
133
141
.10.1016/j.jlp.2014.06.001
14.
Rydlewicz
,
W.
,
Rydlewicz
,
M.
, and
Pałczyński
,
T.
,
2019
, “
Experimental Investigation of the Influence of an Orifice Plate on the Pressure Pulsation Amplitude in the Pulsating Flow in a Straight Pipe
,”
Mech. Syst. Signal Process.
,
117
, pp.
634
652
.10.1016/j.ymssp.2018.08.005
15.
Palczynski
,
T.
,
2017
, “
A Hybrid Method of Estimating Pulsating Flow Parameters in the Space-Time Domain
,”
Mech. Syst. Signal Process.
,
89
, pp.
58
66
.10.1016/j.ymssp.2016.09.021
16.
Ahuja
,
V.
,
Hosangadi
,
A.
,
Cavallo
,
P. A.
,
Ungewitter
,
R. J.
, and
Shipman
,
J. D.
,
2005
, “
Simulation of Unsteady Valve Systems
,”
ASME
Paper No. FEDSM2005-77447.10.1115/FEDSM2005-77447
17.
Zhe
,
L.
,
Wei
,
Z. J.
, and
Zhang
,
P.
,
2007
, “
Internal Flow Field Numerical Calculation and Dynamic Characteristic Study of Pressure-Regulating Valve
,”
Trans. Beijing Inst. Technol.
,
27
(
5
), pp.
390
394
.https://en.cnki.com.cn/Article_en/CJFDTOTAL-BJLG200705003.htm
18.
Morita
,
R.
,
Inada
,
F.
,
Mori
,
M.
,
Tezuka
,
K.
, and
Tsujimoto
,
Y.
,
2007
, “
CFD Simulations and Experiments of Flow Fluctuations Around a Steam Control Valve
,”
ASME J. Fluid Eng.
,
129
(
1
), pp.
48
54
.10.1115/1.2375123
19.
Guo
,
Z.
,
2008
, “
Numerical Analysis of Dynamic Properties of Safety Valve by Using Method of Fluid and Structure Interaction
,”
Chin. J. Mech. Eng.
,
44
(
8
), pp.
61
66
.10.3901/JME.2008.08.061
20.
Song
,
X. G.
,
Cui
,
L.
, and
Park
,
Y. C.
,
2010
, “
Three-Dimensional CFD Analysis of a Spring-Loaded Pressure Safety Valve From Opening to Re-closure
,”
ASME
Paper No. PVP2010-25024.10.1115/PVP2010-25024
21.
Song
,
X. G.
,
Cui
,
L.
,
Cao
,
M. S.
,
Cao
,
W. P.
,
Park
,
Y. C.
, and
Dempster
,
W. M.
,
2014
, “
A CFD Analysis of the Dynamics of a Direct-Operated Safety Relief Valve Mounted on a Pressure Vessel
,”
Energy Convers. Manage.
,
81
(
2
), pp.
242
246
.10.1016/j.enconman.2014.02.021
22.
Song
,
X. G.
,
Wang
,
L. T.
,
Park
,
Y. C.
, and
Sun
,
W.
,
2015
, “
A Fluid-Structure Interaction Analysis of the Spring-Loaded Pressure Safety Valve During Popping Off
,”
Procedia Eng.
,
130
, pp.
87
94
. Volume10.1016/j.proeng.2015.12.178
23.
Zong
,
C.
,
Zheng
,
F.
,
Chen
,
D.
,
Dempster
,
W.
, and
Song
,
X.
,
2020
, “
Computational Fluid Dynamics Analysis of the Flow Force Exerted on the Disk of a Direct-Operated Pressure Safety Valve in Energy System
,”
ASME. J. Pressure Vessel Technol.
,
142
(
1
), p. 011702.10.1115/1.4045131
24.
Yang
,
L.
,
Wang
,
Z. J.
,
Dempster
,
W.
,
Yu
,
X. H.
, and
Tu
,
S. T.
,
2017
, “
Experiments and Transient Simulation on Spring-Loaded Pressure Relief Valve Under High Temperature and High Pressure Steam Conditions
,”
J. Loss Prev. Process Ind.
,
45
, pp.
133
145
.10.1016/j.jlp.2016.11.019
25.
Beune
,
A.
,
Kuerten
,
J.
, and
van Heumen
,
M. P. C.
,
2012
, “
CFD Analysis With Fluid–Structure Interaction of Opening High-Pressure Safety Valves
,”
Comput. Fluids
,
64
, pp.
108
116
.10.1016/j.compfluid.2012.05.010
26.
Scuro
,
N. L.
,
Angelo
,
E.
,
Angelo
,
G.
, and
Andrade
,
D. A.
,
2018
, “
A CFD Analysis of the Flow Dynamics of a Directly-Operated Safety Relief Valve
,”
Nucl. Eng. Des.
,
328
, pp.
321
332
.10.1016/j.nucengdes.2018.01.024
27.
Föllmer
,
B.
, and
Zeller
,
H.
,
1980
, “
The Influence of Pressure Surges on the Functioning of Safety Valves
,”
Third International Conference on Pressure Surges
, Canterbury, England, Apr. 19–22, pp.
394
402
.
28.
Licskó
,
G.
,
Champneys
,
A.
, and
Hős
,
C.
,
2009
, “
Nonlinear Analysis of a Single Stage Pressure Relief Valve
,”
IAENG Int. J. Appl. Math.
,
39
(
4
), pp.
33
39
.http://www.iaeng.org/IJAM/issues_v39/issue_4/IJAM_39_4_12.pdf
29.
ANSYS, Inc
.,
2016
, ANSYS 18.0 Help,
ANSYS
,
Canonsburg, PA
.
30.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
You do not currently have access to this content.