In nuclear power plants power actuated pressure relief valves serve several purposes. They act as safety valves and open automatically in response to unusually high pressures in the primary system. They also act as power operated valves and are used to relieve steam in response to automatic or manually initiated control signals. These valves are required to lift completely over a short duration from the time that they receive an actuation signal, or the system pressure exceeds the set point. This short lift time results in the valve disk moving at high velocities, and can result in high impact forces on the piston and stem when the valve fully opens.

To quantitatively evaluate the dynamic performance of the Target Rock Pressure Relief Valve, an analysis effort was undertaken which would accommodate both the fluid dynamic features of the valve operation, as well as the kinematic characteristics of the valve, during pressure relief valve operation.

In this paper we present the valve model developed, and the computed results that could be compared with corresponding parameters as measured from experimental testing for the pressure relief valve.

This content is only available via PDF.
You do not currently have access to this content.