Abstract

Contemporary approach of corrosion prevention is to use internal lining system to isolate the corrosive medium from the host pipe’s inner surface. The liners serve to offer a longer lifecycle of pipelines, as well as a corrosion barrier against aggressive chemical agents. A recent lining technology based on a Kevlar-reinforced flexible polymer composite liner called the InField Liner (IFL), has been successfully installed in several pipelines. It has been theorized that the added inherent strength of the liner due to the Kevlar-reinforcement can give rise to an increase in burst pressure level of the corroded pipeline. The mechanical response of the IFL liner is established accurately and used to define the constitutive behaviour of the IFL material in a non-linear finite element model of liner installed in a host pipe with internal corrosion defect. The results reveal that an increase in burst pressure is achieved with the IFL liner, which is attributed to the interaction between the IFL and the internal corrosion defect. The increase in burst pressure is especially note for rather deep and short defects. The primary reason to the increase is the stretch of the Kevlar fabric into the defect cavity inducing a load transfer between the liner and pipe at the defect area. A closed-form solution is developed, which can be used to assess the increase in burst of pipelines containing internal corrosion defects when rehabilitated with an IFL liner.

Article PDF first page preview

Article PDF first page preview
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.